精英家教网 > 初中数学 > 题目详情

【题目】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).

(1)求反比例函数的解析式及B点的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

【答案】(1); B点坐标为(3,1);(2) P点坐标为(,0).

【解析】1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;

(2)作A点关于x轴的对称点A′,连接BA′x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.

1)把A(1,3)代入y=k=1×3=3,

∴反比例函数解析式为y=

B(3,m)代入y=3m=3,解得m=1,

B点坐标为(3,1);

(2)作A点关于x轴的对称点A′,连接BA′x轴于P点,则A′(1,﹣3),

PA+PB=PA′+PB=BA′,

∴此时PA+PB的值最小,

设直线BA′的解析式为y=mx+n,

A′(1,﹣3),B(3,1)代入得,解得

∴直线BA′的解析式为y=2x﹣5,

y=0时,2x﹣5=0,解得x=

P点坐标为(,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的两条对角线分别长68,P是对角统AC上的一个动点,M、N分别是边AB、BC的中点,PM+PN的最小值是( )

A. 10 B. 8 C. 5 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边ABC 的边长为 4AD BC 边上的中线,F 是边 AD 上的动点,E 是边 AC 上的点, AE=2,且 EF+CF 取得最小值时.

)能否求出ECF 的度数?_____(用填空);

)如果能,请你在图中作出点 F(保留作图痕迹,不写证明).并直接写出ECF 的度 数;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCOAC边上的一个动点过点O作直线MNBCMNBCA的外角平分线CF于点FACB内角平分线CEE

1求证:EO=FO

2当点O运动到何处时四边形AECF是矩形?并证明你的结论;

3AC边上存在点O使四边形AECF是正方形猜想ABC的形状并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC=6,BD=6,EBC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是(  )

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=﹣x2+bx+cx轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.

(1)求抛物线的表达式;

(2)设抛物线的对称轴为l,lx轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

(3)如图2,连接BC,PB,PC,设PBC的面积为S.

①求S关于t的函数表达式;

②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D的切线交AC的延长线于点G.

求证:(1)DG⊥AG;

(2)AG+CG=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列关于的二次三项式中(表示实数),在实数范围内一定能分解因式的是(

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点A06)的直线AB与直线OC相交于点C24)动点P沿路线OCB运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案