精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

【答案】D
【解析】解:∵把点P(﹣5,3)向右平移8个单位得到点P1
∴点P1的坐标为:(3,3),
如图所示:将点P1绕原点逆时针旋转90°得到点P2 , 则其坐标为:(﹣3,3),
将点P1绕原点顺时针旋转90°得到点P3 , 则其坐标为:(3,﹣3),
故符合题意的点的坐标为:(3,﹣3)或(﹣3,3).
故选:D.

首先利用平移的性质得出点P1的坐标,再利用旋转的性质得出符合题意的答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
(1)把下面的频数分布表和频数分布直方图补充完整;

月均用水量x(t)

频数(户)

频率

0<x≤5

6

0.12

5<x≤10

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

25<x≤30

2

0.04



(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F在OD上一点,且∠1=∠A.
(1)求证:FE∥OC;
(2)若∠DFE=70°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,点A(1,0),B(5,0),C(3,3),D(1,4).

(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D;
(2)四边形ABCD的面积是;(直接写出结果)
(3)把四边形ABCD向左平移6个单位,再向下平移1个单位得到四边形A′B′C′D′在图中画出四边形A′B′C′D′,并写出A′B′C′D′的坐标.[(1)(3)问的图画在同一坐标系中].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】意大利著名画家达芬奇验证勾股定理的方法如下:
①在一张长方形的纸板上画两个边长分别为a、b的正方形,并连接BC、FE.
②沿ABCDEF剪下,得两个大小相同的纸板Ⅰ、Ⅱ,请动手做一做.
③将纸板Ⅱ翻转后与Ⅰ拼成其他的图形.
④比较两个多边形ABCDEF和A′B′C′D′E′F′的面积,你能验证勾股定理吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=10,BC=12,BC边上的中线AD=8.
(1)证明:△ABC为等腰三角形;
(2)点H在线段AC上,试求AH+BH+CH的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:2x+5﹣3(x﹣1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,点F为对角线BD上一点,点E为AB的延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△CEF均为等腰直角三角形,E在△ABC内,∠CAE+∠CBE=90°,连接BF.

(1)求证:△CAE∽△CBF.

(2)若BE=1,AE=2,求CE的长.

查看答案和解析>>

同步练习册答案