Èçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÊÇ×ø±êÔ­µã£¬ËıßÐÎABCOÊÇÁâÐΣ¬µãAµÄ×ø±êΪ£¨-3£¬4£©£¬µãCÔÚxÖáµÄÕý°ëÖáÉÏ£¬Ö±ÏßAC½»yÖáÓÚµãM£¬AB±ß½»yÖáÓÚµãH£®
£¨1£©ÇóOAµÄ³¤¶È£¬²¢ÇóÖ±ÏßACµÄ½âÎöʽ£»
£¨2£©Á¬½ÓBM£¬Èçͼ2£¬¶¯µãP´ÓµãA³ö·¢£¬ÑØÕÛÏßABC·½ÏòÒÔ2¸öµ¥Î»/ÃëµÄËÙ¶ÈÏòÖÕµãCÔÈËÙÔ˶¯£¬Éè¡÷BMPµÄÃæ»ýΪS£¨S¡Ù0£©£¬µãPµÄÔ˶¯Ê±¼äΪtÃ룬ÇóSÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£¨ÒªÇóд³ö×Ô±äÁ¿tµÄȡֵ·¶Î§£©£»
£¨3£©ÈôPΪֱÏßABÉϵÄÒ»µã£¬ÇÒ¡÷BMPΪµÈÑüÈý½ÇÐΣ¬Ö±½Óд³öËùÓÐÂú×ãÌõ¼þµÄµãPµÄ×ø±ê£®
¿¼µã£ºÒ»´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃOAµÄ³¤£¬¸ù¾ÝÁâÐεÄÐÔÖÊ£¬¿ÉµÃOCµÄ³¤£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©·ÖÀàÌÖÂÛ£º0¡Üt£¼2.5£¬2.5£¼t¡Ü5£¬¸ù¾ÝËÙ¶ÈÓëʱ¼äµÄ¹ØÏµ£¬¿ÉµÃPBµÄ³¤£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨3£©¸ù¾ÝµÈÑüÈý½ÇµÄ¶¨Ò壬·ÖÀàÌÖÂÛ£ºBM=PM£¬BM=PB£¬PB=PM£¬¸ù¾ÝÁ½µã¼äµÄ¾àÀëÏàµÈ£¬¿ÉµÃ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£®
½â´ð£º½â£º£¨1£©ÔÚÖ±½ÇÈý½ÇÐÎAOHÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
AO=
AH2+OH2
=
32+42
=5£¬
ÓɵãOÊÇ×ø±êÔ­µã£¬ËıßÐÎABCOÊÇÁâÐΣ¬µÃ
OC=OA=AB=5£¬¼´C£¨5£¬0£©
ÉèÖ±ÏßACµÄ½âÎöʽy=kx+b£¬º¯ÊýͼÏó¹ýµãA¡¢C£¬µÃ
5k+b=0
-3k+b=4
£¬½âµÃ
k=-
1
2
b=
5
2
£¬
Ö±ÏßACµÄ½âÎöʽy=-
1
2
x+
5
2
£»
£¨2£©ÉèMµ½Ö±ÏßBCµÄ¾àÀëΪh£¬
µ±x=0ʱ£¬y=
5
2
£¬¼´M£¨0£¬
5
2
£©£¬
HM=HO-OM=4-
5
2
=
3
2
£¬
ÓÉS¡÷ABC=S¡÷AMB+SBMC£¬
1
2
AB•OH=
1
2
AB•HM+
1
2
BC•h£¬
1
2
¡Á5¡Á4=
1
2
¡Á5¡Á
3
2
+
1
2
¡Á5h£¬
½âµÃh=
5
2
£¬
¢Ùµ±0¡Üt£¼
5
2
ʱ£¬BP=BA-AP=5-2t£¬HM=OH-OM=
3
2
£¬
s=
1
2
BP•HM=
1
2
¡Á
3
2
£¨5-2t£©=-
3
2
t-
15
4
£¬
¢Úµ±2.5£¼t¡Ü5ʱ£¬BP=2t-5£¬h=
5
2

S=
1
2
BP•h=
1
2
¡Á
5
2
£¨2t-5£©=
5
2
t-
25
4
£»
£¨3£©¢Ùµ±BM=PMʱ£¬¼´MH´¹Ö±Æ½·ÖPB£¬
PH=BH=BA-HA=5-3=2£¬¼´P1£¨-2£¬4£©£»
¢Úµ±BM=PBʱ£¬ÉèP£¨a£¬4£©£¬|5-a|=
HM2+BH2
=
5
2
£¬
½âµÃa=
5
2
»òa=
15
2
£¬¼´P2£¨
5
2
£¬4£©£¬P3£¨
15
2
£¬4£©£»
¢Ûµ±PB=PMʱ£¬|5-a|=
a2+(4-
5
2
)2
£¬
ƽ·½£¬µÃa2-10a+25=a2+
9
4
£®
½âµÃa=
91
40
£¬¼´P4£¨
91
40
£¬4£©£¬
×ÛÉÏËùÊö£ºP1£¨-2£¬4£©£¬P2£¨
5
2
£¬4£©£¬P3£¨
15
2
£¬4£©£¬P4£¨
91
40
£¬4£©£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓÃÁ˹´¹É¶¨ÀíÇóÏ߶Σ¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬£¨2£©·ÖÀàÌÖÂÛ£¬ÀûÓÃÁËÈý½ÇÐεÄÃæ»ý¹«Ê½£»£¨3£©·ÖÀàÌÖÂÛ£¬ÀûÓÃÁ˵ÈÑüÈý½ÇÐε͍Ò壬Á½µã¼äµÄ¾àÀ빫ʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺£¨-
n
m
£©-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

»­³öº¯Êýy=x2-4x+7µÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¡÷ABDºÍ¡÷CBD¶¼ÊǵȱßÈý½ÇÐΣ¬µãE´ÓA³ö·¢ÏòDÔ˶¯£¨µ«²»ÓëµãA¡¢DÖØºÏ£©£¬Í¬Ê±µãFÒÔÏàͬµÄËÙ¶È´ÓD³ö·¢ÏòCÔ˶¯£¨µ«²»ÓëµãD¡¢CÖØºÏ£©£®
£¨1£©ÊÔ²ÂÏëBE¡¢BFµÄ´óС¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÊÔ˵Ã÷µãE´ÓAÏòDÔ˶¯µÄ¹ý³ÌÖÐËıßÐÎBEDFÃæ»ýµÄ±ä»¯Çé¿ö£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺£¨a-2£©£¨a-1£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÊÌ⣺Èçͼ1£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÑOÊÇRt¡÷ABCµÄÄÚÇÐÔ²£¬Çеã·Ö±ðÊÇD¡¢E¡¢F£¬ÈôÈý½ÇÐÎÈý±ß³¤·Ö±ð¼ÇΪBC=a£¬AC=b£¬AB=c£¬ÄÚÇÐÔ²°ë¾¶¼ÇΪr£¬ÏÖÓÐСҢºÍС俶԰뾶½øÐмÆË㣮ÏÂÃæÊÇÁ½Î»Í¬Ñ§¼òÒªµÄ½â´ð¹ý³Ì£º
СҢͬѧ½â·¨£º
·Ö±ðÁ¬½ÓOA¡¢OB¡¢OC¡¢OD¡¢OE¡¢OF£¬¡ß¡ÑOÊÇ¡÷ABCÄÚÇÐÔ²£¬D¡¢E¡¢FΪÇе㣬¡àCD=CE£¬AE=AF£¬BD=BF£¬¡ÏOEC=¡ÏODC=90¡ã£¬¡ß¡ÏC=Rt¡Ï£¬CD=CE£¬¡àËıßÐÎCDOEÊÇÕý·½ÐΣ¬¡àCD=CE=r£¬AE=b-r=AF£¬BD=a-r=BF£¬¡ßBF+AF=AB=c£¬¡à£¨a-r£©+£¨b-r£©=c£»
Сä¿Í¬Ñ§½â·¨£º
·Ö±ðÁ¬½ÓOA¡¢OB¡¢OC¡¢OD¡¢OE¡¢OF£¬¡ß¡ÑOÊÇ¡÷ABCÄÚÇÐÔ²£¬D¡¢E¡¢FΪÇе㣬¡àOD¡ÍBC£¬OE¡ÍAC£¬OF¡ÍABÓÚD¡¢E¡¢F£¬OD=OE=OF£¬¡àS¡÷ABC=S¡÷BOC+S¡÷AOC+S¡÷AOB=
1
2
BC•DO+
1
2
AC•OE+
1
2
AB•FO=
1
2
£¨BC+AC+AB£©•OD£¬¡ß¡ÏC=90¡ã£¬¡à
1
2
ab=
1
2
£¨a+b+c£©•r£¬¡àr=
a+b-c
2
¡àr=
ab
a+b+c

£¨1£©ÖªÊ¶Àí½â£º
¶ÔÓÚÁ½Î»Í¬Ñ§µÄ½â·¨£¬ÕýÈ·µÄÅжÏÊÇ
 

A£®Á½È˶¼ÕýÈ·  B£®Á½È˶¼´íÎó  C£®Ð¡Ò¢ÕýÈ·£¬Ð¡ä¿´íÎó  D£®Ð¡Ò¢´íÎó£¬Ð¡ä¿ÕýÈ·
£¨2£©·½·¨ÑÓÉ죺
Èçͼ2£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÑOÊÇRt¡÷ABCµÄÄÚÇÐÔ²£¬¡ÑOÓëABÏàÇÐÓÚµãD£¬ÇÒAD=7£¬BD=3£¬Çó¡÷ABCµÄÃæ»ý£®
£¨3£©Ó¦ÓÃÍØÕ¹£º
Èçͼ3£¬¡÷ABCÖУ¬A¡¢B¡¢CÈýµãµÄ×ø±ê·Ö±ðΪA£¨0£¬8£©£¬B£¨-6£¬0£©£¬C£¨15£¬0£©£®Èô¡÷ABCÄÚÐÄΪD£¬ÔòµãDµÄ×ø±êΪ
 
£®£¨Ö±½Óд³ö½á¹û£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁмÆËã´íÎóµÄÊÇ£¨¡¡¡¡£©
A¡¢x6¡Âx-2=
1
x2
B¡¢x2¡Âx6=x2
C¡¢£¨x-1y-2£©-3=x3y6
D¡¢x9•x-9=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô
2a
a2-2a
=
2
a-2
£¬Ôò£¨¡¡¡¡£©
A¡¢a£¾0B¡¢a¡Ù0ÇÒa¡Ù2
C¡¢a£¼0D¡¢a¡Ù2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬½«³¤·½ÐÎֽƬABCDÑØ×ÅEFÕÛµþ£¬Ê¹µÃµãCÓëµãAÖØºÏ£®
£¨1£©ÇóÖ¤£ºAE=AF£»
£¨2£©ÈôAB=3£¬BC=9£¬ÊÔÇóCFµÄ³¤£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÊÔÇóEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸