精英家教网 > 初中数学 > 题目详情

四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.

(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;

(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;

(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.


【考点】四边形综合题;全等三角形的判定与性质;正方形的性质.

【专题】综合题.

【分析】(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;

(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;

(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO平分∠BHG,即∠BHO=45°.

【解答】(1)①证明:∵四边形ABCD为正方形,

∴DA=DC,∠ADB=∠CDB=45°,

在△ADG和△CDG中

∴△ADG≌△CDG(SAS),

∴∠DAG=∠DCG;

②解:AG⊥BE.理由如下:

∵四边形ABCD为正方形,

∴AB=DC,∠BAD=∠CDA=90°,

在△ABE和△DCF中

∴△ABE≌△DCF(SAS),

∴∠ABE=∠DCF,

∵∠DAG=∠DCG,

∴∠DAG=∠ABE,

∵∠DAG+∠BAG=90°,

∴∠ABE+∠BAG=90°,

∴∠AHB=90°,

∴AG⊥BE;

(2)解:由(1)可知AG⊥BE.

如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.

∴∠MON=90°,

又∵OA⊥OB,

∴∠AON=∠BOM.

∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,

∴∠OAN=∠OBM.

在△AON与△BOM中,

∴△AON≌△BOM(AAS).

∴OM=ON,

∴矩形OMHN为正方形,

∴HO平分∠BHG.

(3)将图形补充完整,如答图2示,∠BHO=45°.

与(1)同理,可以证明AG⊥BE.

过点O作OM⊥BE于点M,ON⊥AG于点N,

与(2)同理,可以证明△AON≌△BOM,

可得OMHN为正方形,所以HO平分∠BHG,

∴∠BHO=45°.

【点评】本题考查了四边形的综合题:熟练掌握正方形的性质,熟练运用全等三角形的判定与性质解决线段和角相等的问题.

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


下列说法正确的是(  )

①代数式的意义是a除以b的商与1的和;

②要使y=有意义,则x应该满足0<x≤3;

③当2x﹣1=0时,整式2xy﹣8x2y+8x3y的值是0;

④地球上的陆地面积约为149000000平方千米,用科学记数法表示为1.49×108平方千米.

A.①④ B.①②  C.②③ D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:


 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正方形的面积是12,是等边三角形,点在正方形内,在对角线上有一点,使最小,则这个最小值为(    )

A、         B、           C、        D、

查看答案和解析>>

科目:初中数学 来源: 题型:


,则的值为(     )

A、           B、          C、          D、

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:(1﹣0+(﹣1)2014tan30°+(2

查看答案和解析>>

科目:初中数学 来源: 题型:


甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是(  )

A.     B.

C.       D.

查看答案和解析>>

科目:初中数学 来源: 题型:


方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面 直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).

(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;

(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标 ____

查看答案和解析>>

科目:初中数学 来源: 题型:


若x2+kx+16是完全平方式,则k的值为  

查看答案和解析>>

同步练习册答案