分析 (1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(3)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可;
(4)求出b2-4ac的值,再代入公式求出即可.
解答 解:①x2-7x+6=0,
(x-6)(x-1)=0,
x-6=0,x-1=0,
x1=6,x2=1;
②(5x-1)2=3(5x-1),
(5x-1)2-3(5x-1)=0,
(5x-1)(5x-1-3)=0,
5x-1=0,5x-1-3=0,
x1=$\frac{1}{5}$,x2=$\frac{4}{5}$;
③3x2+8x-3=0,
3x2+8x=3,
x2+$\frac{8}{3}$x=1,
x2+$\frac{8}{3}$x+($\frac{4}{3}$)2=1+($\frac{4}{3}$)2,
(x+$\frac{4}{3}$)2=$\frac{25}{9}$,
x+$\frac{4}{3}$=±$\frac{5}{3}$,
x1=$\frac{1}{3}$,x2=-3;
④x2-2$\sqrt{2}$x+2=0,
b2-4ac=(2$\sqrt{2}$)2-4×1×2=0,
x=$\frac{2\sqrt{2}±\sqrt{0}}{2}$,
x1=$\sqrt{2}$,x2=$\sqrt{2}$.
点评 本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| -0.87 | +1 | -1.2 | 0 | -0.7 | +0.6 | -0.4 | -0.1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (0,0) | B. | ($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{1}{2}$) | D. | (-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| 图形 | ||||
| 线段总条数 | 3 | 6 | 10 | 15 |
| A. | n+2 | B. | 1+2+3+…+n+n+1 | C. | n+1 | D. | $\frac{n(n+1)}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com