精英家教网 > 初中数学 > 题目详情

【题目】已知外切于的外公切线,为切点,若,则的距离是( )

A. B. C. D.

【答案】B

【解析】

先画图,由AB是⊙O1和⊙O2的外公切线,则∠O1AB=∠O2BA=90°,再由O1A=O1M,O2B=O2M,得∠O1AM=∠O1MA,∠O2BM=∠O2MB,则∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,则∠AMB=∠BMO2+∠AMO1=90°,再由勾股定理求出AB边上的高.

如图,


∵AB是⊙O1和⊙O2的外公切线,∴∠O1AB=∠O2BA=90°,
∵O1A=O1M,O2B=O2M,∴∠O1AM=∠O1MA,∠O2BM=∠O2MB,
∴∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,
∴∠AMB=∠BMO2+∠AMO1=90°,
∴AM⊥BM,
∵MA=4cm,MB=3cm,
∴由勾股定理得,AB=5cm,

由三角形的面积公式,M到AB的距离是.故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCDADBC,边AB4BC8.将此长方形沿EF折叠,使点D与点B重合,点C落在点G处.

1)试判断BEF的形状,并说明理由;

2)若AE3,求BEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).

(1)试确定此二次函数的解析式;

(2)请你判断点P(-2,3)是否在这个二次函数的图象上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,完成下列推理过程:

如图所示,点E外部,点DBC边上,DEACF,若

求证:

证明:∵(已知),

________________),

________________),

又∵

________________________),

(已证)

(已知)

(已证)

________.

________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将直角三角板ABC绕直角顶点C逆时针旋转角度,得到△DCE,其中CEAB交于点F,∠ABC=30°,连接BE,若△BEF为等腰三角形(即有两内角相等),则旋转角的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,ACB=90°ABC=60°BC=2cmDBC的中点,若动点E1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t6),连接DE,当BDE是直角三角形时,t的值为

A2 B2.53.5 C3.54.5 D23.54.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.设每个台灯的销售价上涨元.

(1) 试用含的代数式填空:

涨价后,每个台灯的利润为 元;

涨价后,商场的台灯平均每月的销售量为 台;

(2) 如果商场要想销售总利润平均每月达到20000元,商场经理甲说在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了,试判断经理甲与乙的说法是否正确,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线Lx轴、y轴分别交于AB两点,在y轴上有一点C04,线段OA上的动点M(与OA不重合)从A点以每秒1个单位的速度沿x轴向左移动。

1)求AB两点的坐标;

2)求△COM的面积SM的移动时间t之间的函数关系式,并写出t的取值范围;

3)当t何值时△COM≌△AOB,并求此时M点的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B两个村庄的坐标分别为(2,2)、(7,4),一辆汽车从原点O出发,在x轴上行驶.

(1)汽车行驶到什么位置时离村庄A最近?写出此位置的坐标.

(2)汽车行驶到什么位置时离村庄B最近?写出此位置的坐标.

(3)请在图中画出汽车到两村庄的距离和最短的位置,并求出此最短的距离和.

查看答案和解析>>

同步练习册答案