精英家教网 > 初中数学 > 题目详情

【题目】已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠A=22.5°,CD=8cm,求⊙O的半径.

【答案】解:连接OC,如图所示:
∵AB是⊙O的直径,弦CD⊥AB,
∴CE=DE= CD=4cm,
∵∠A=22.5°,
∴∠COE=2∠A=45°,
∴△COE为等腰直角三角形,
∴OC= CE=4 cm,
即⊙O的半径为4 cm.

【解析】连接OC,由圆周角定理得出∠COE=45°,根据垂径定理可得CE=DE=4cm,证出△COE为等腰直角三角形,利用特殊角的三角函数可得答案.
【考点精析】关于本题考查的勾股定理的概念和垂径定理,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P是等边三角形ABC内的一点,连接PA,PB,PC,BP为边作∠PBQ=60,且BQ=BP,连接CQ.

(1)观察并猜想APCQ之间的大小关系,并证明你的结论;

(2)PA=3,PB=4,PC=5,连接PQ,试判断PQC的形状,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角 (0°<α≤45°)得到△ABC′,如图所示.试问:

(1)当α为多少度时,能使得图2中ABDC

(2)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校准备组织290名学生进行野外考察活动,行李件数比学生人数的一半还少45.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车最多能载30人和20件行李.

(1)求行李有多少件?

(2)现计划租用甲种汽车x辆,请你帮学校设计所有可能的租车方案.

(3)如果甲、乙两种汽车每辆的租车费分别是2000元、1800元,请你选择最省钱的一种租车方案,并求出至少的费用是多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知函数 的图象与x轴,y轴分别交于点A、B,与函数的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数的图象于点C、D.

(1)求点M、点A的坐标;

(2)若OB=CD,求a的值,并求此时四边形OPCM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对非负实数x“四舍五入到个位的值记为[x].即当n为非负整数时,若n﹣ ≤x<n+ ,则[x]=n.如:[3.4]=3,[3.5]=4,…根据以上材料,解决下列问题:

(1)填空:

①若[x]=3,则x应满足的条件:________;

②若[3x+1]=3,则x应满足的条件:________;

(2)求满足[x]= x﹣1的所有非负实数x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知圆心0到BD的距离为3,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,ABPDCE全等.

查看答案和解析>>

同步练习册答案