【题目】取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角 (0°<α≤45°)得到△ABC′,如图所示.试问:
(1)当α为多少度时,能使得图2中AB∥DC.
(2)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.
【答案】(1);(2)∠DBC′+∠CAC′+∠BDC的值的大小没有变化, 总是105°.
【解析】
(1)要使AB∥DC,只要证出∠CAC′=15°即可.
(2)当0°<α≤45°时,总有△EFC′存在.根据三角形外角的性质和三角形内角和定理即可得出结论.
(1)由题意∠CAC′=α,要使AB∥DC,须∠BAC=∠ACD,∴∠BAC=30°,∴α=∠CAC′=∠BAC′﹣∠BAC=45°﹣30°=15°,即α=15°时,能使得AB∥DC.
(2)连接BD,∠DBC′+∠CAC′+∠BDC的值的大小没有变化,总是105°.理由如下:
当0°<α≤45°时,总有△EFC′存在.
∵∠EFC′=∠BDC+∠DBC′,∠CAC′=α,∠FEC′=∠C+α.
又∵∠EFC′+∠FEC′+∠C′=180°,∴∠BDC+∠DBC′+∠C+α+∠C′=180°.
又∵∠C′=45°,∠C=30°,∴∠DBC′+∠CAC′+∠BDC=105°.
科目:初中数学 来源: 题型:
【题目】用适当的方法解下列方程:
(1)2x2﹣8x=0.
(2)x2﹣3x﹣4=0.
求出抛物线的开口方向、对称轴、顶点坐标.
(3)y= x2﹣x+3(公式法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABDE中,C是BD边的中点.
(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为 ;(直接写出答案)
(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;
(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,则线段AE长度的最大值是 (直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答
(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.
(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题6分)如图,已知△ABC,∠C=Rt∠,AC<BC,D为BC上一点,且到A,B两点的距离相等.
(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=37°,求∠CAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠ABC=45°,AH⊥BC于点H,点D为AH上的一点,且DH=HC,连接BD并延长BD交AC于点E,连接EH.
(1)请补全图形;
(2)求证:△ABE是直角三角形;
(3)若BE=a,CE=b,求出S△CEH:S△BEH的值(用含有a,b的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正确的是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com