精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度数是

A. 110° B. 140° C. 110°或140° D. 以上都不对

【答案】D

【解析】

利用等腰三角形的性质,得到两底角相等,结合三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和,可直接得到结果.

解:∵等腰三角形两底角相等,三角形的任一外角等于和它不相邻的两个内角之和,
∴当顶角∠A=40°时,则∠ACB=B=180°-40=70°
∴∠ACB的外角的度数是180°-70°=110°
∴当底角∠A=40°时,∠B=40°,则∠ACB的外角的度数为2A=2×40=80°
当底角∠A=40°时,∠ACB=40°,则∠ACB的外角的度数为180-40=140°
故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知sin∠BAH= ,AB=10米,AE=15米.

(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,等边△ABC为⊙O的内接三角形,点G和点F在⊙O上且位于点A的两侧,连接BF、CG交于点E,且BF=CG.

(1)求证:∠BEC=120°;
(2)如图2,取BC边中点D,连接AE、DE,求证:AE=2DE;
(3)如图3,在(2)的条件下,过点A作⊙O的切线交BF的延长线于点H,若AE=AH=4,请求出⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2 0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )

A.(20)B.(-1-1)C.( -21)D.(-1 1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.

当t为何值时,四边形ABQP是矩形;

当t为何值时,四边形AQCP是菱形;

分别求出(2)中菱形AQCP的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,若OA=4,则阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y= (m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(12,n)
, OA=10,E为x轴负半轴上一点,且tan∠AOE=

(1)求该反比例函数和一次函数的解析式;
(2)延长AO交双曲线于点D,连接CD,求△ACD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一蓄水池中有水40m3,如果每分钟放出2m3的水,水池里的水量与放水时间有如下关系:

下列数据中满足此表格的是(  )

A. 放水时间8分钟,水池中水量25m3

B. 放水时问20分钟,水池中水量4m3

C. 放水时间26分钟,水池中水量14m3

D. 放水时间18分钟,水池中水量4m3

查看答案和解析>>

同步练习册答案