精英家教网 > 初中数学 > 题目详情

【题目】如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知sin∠BAH= ,AB=10米,AE=15米.

(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.

【答案】
(1)解:由题意得,sin∠BAH= = ,又AB=10米,

∴BH= AB=5米


(2)解:∵BH⊥HE,GE⊥HE,BG⊥DE,

∴四边形BHEG是矩形.

∵由(1)得:BH=5,AH=5

∴BG=AH+AE=5 +15,

Rt△BGC中,∠CBG=45°,

∴CG=BG=5 +15.

Rt△ADE中,∠DAE=60°,AE=15,

∴DE= AE=15

∴CD=CG+GE﹣DE=5 +15+5﹣15 =20﹣10

答:广告牌CD的高度为(20﹣10 )米.


【解析】(1)根据正弦的概念求出BH的长;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出广告牌的高度.
【考点精析】认真审题,首先需要了解关于仰角俯角问题(仰角:视线在水平线上方的角;俯角:视线在水平线下方的角).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某小区为了绿化环境,计划分两次购进A,B两种花草,第一次分别购进A,B两种花草30棵和15棵,共花费675元;第二次分别购进A,B两种花草12棵和5棵,共花费265元(两次购进的A、B两种花草价格均分别相同).
(1)A,B两种花草每棵的价格分别是多少元?
(2)若购买A,B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你设计一种费用最省的方案,并求出该方案所需费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+3(a≠0)经过A(3,0)、B(4,1)两点,且与y轴交于点C.
(1)求抛物线的解析式;
(2)如图(1),设抛物线与x轴的另一个交点为D,在抛物线的对称轴上找一点H,使△CDH的周长最小,求出H点的坐标并求出最小周长值.

(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求面积的最小值及E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列两个等式:,给出定义如下:我们称使等式 成立的一对有理数共生有理数对,记为(),如:数对(),(),都是共生有理数对

1)数对(),()中是共生有理数对吗?说明理由.

2)若()是共生有理数对,则()是共生有理数对吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.

方案一:每千克种子价格为4,均不打折;

方案二:购买3千克以内(3千克)的价格为每千克5,若一次购买超过3千克,则超出部分的种子打七折.

(1)请分别求出方案一、方案二中购买的种子数量x(千克)与付款金额y()之间的函数关系式;

(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨800甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午1000,甲、乙二人相距多远?还能保持联系吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子里,有5个除颜色外,其他都相同的小球,其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】-5-21,三个数按照给出顺序构造一组无限循环数据。

(1)求第2018个数是多少?

(2)求前50个数的和是多少?

(3)试用含(为正整数)的式子表示出数“-2所在的位置数;

(4)请你算出第,,个这三个数的和?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度数是

A. 110° B. 140° C. 110°或140° D. 以上都不对

查看答案和解析>>

同步练习册答案