精英家教网 > 初中数学 > 题目详情

【题目】如图 Rt△ABC ,∠ACB=90°,ACBC=1, Rt△ABC A 点逆时针旋转 30°后得到 Rt△ADE B 经过的路径为则图中阴影部分的面积是_____

【答案】°

【解析】

试题利用勾股定理列式求出AB,根据弧长公式列式计算即可求出点B经过的路径长,再根据S阴影=SADE+S扇形ABD﹣SABC,再根据旋转的性质可得SADE=SABC,然后利用扇形的面积公式计算即可得解.

解:∵∠ACB=90°AC=BC=1

∴AB==

B经过的路径长==

由图可知,S阴影=SADE+S扇形ABD﹣SABC

由旋转的性质得,SADE=SABC

∴S阴影=S扇形ABD==

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,,等腰直角三角形的腰上,,将绕点逆时针旋转,点的对应点恰好落在上,则的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.

请根据图中信息解答下列问题:

(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;

(2)求恒温系统设定的恒定温度;

(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑假是旅游旺季,为吸引游客,某旅游公司推出两条“精品路线”——“亲子游”和“夏令营”。(17月份,“亲子游”和“夏令营”活动的价格分别为8000/人和12000/人。其中,参加“夏令营”活动的游客人数为“亲子游”活动游客人数的2倍少300人,且“夏令营”线路的旅游总收入不低于“亲子游”线路旅游总收入的一半,

问:(1)参加“亲子游”线路的旅游人数至少有多少人?

2)到了8月份,该旅游公司实行降价促销活动,“亲子游”和“夏令营”线路的价格分别下降(<20),旅游人数在7月份对应最小值的基础上分别上升,当月旅游总收入达到256.32万元,求

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M﹣2m).

1)求反比例函数的解析式;(2)求点B到直线OM的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;

(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过对角线BD中点的直线交ADBC边于FE

1)求证:四边形BEDF是平行四边形;

2)若∠A60°AB4BC6,四边形BEDF是矩形,求该矩形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的汉字听写大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:

成绩x/

频数

频率

50≤x60

2

0.04

60≤x70

6

0.12

70≤x80

9

80≤x90

0.36

90≤x≤100

15

0.30

请根据所给信息,解答下列问题:

1a等于多少,b等于多少;

2)请补全频数分布直方图;

3)这次比赛成绩的中位数会落在哪个分数段;

4)若成绩在90分以上(包括90分)的为等,则该年级参加这次比赛的350名学生中成绩等的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已如抛物线y=-x2+3x+m,其中m为常数

I)当抛物线经过点(35)时,求该抛物线的解析式。

II)当抛物线与直线y=x+3m只有一个交点时,求该抛物线的解析式。

III)当0x4时,试通过m的取值范围讨论抛物线与直线y=x+2的公共点的个数的情况

查看答案和解析>>

同步练习册答案