【题目】如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.
(1)求证BE=DE;
(2)判断DF与ON的位置关系,并说明理由;
(3)△BEF的周长为 .
【答案】(1)见解析;(2)DF⊥ON,理由见解析;(3)24
【解析】
(1)根据正方形的性质证明△BCE≌△DCE即可;
(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;
(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.
解:(1)证明:∵四边形ABCD正方形,
∴CA平分∠BCD,BC=DC,
∴∠BCE=∠DCE=45°,
∵CE=CE,
∴△BCE≌△DCE(SAS);
∴BE=DE;
(2)DF⊥ON,理由如下:
∵△BCE≌△DCE,
∴∠EBC=∠EDC,
∵∠EBC=∠CBN,
∴∠EDC=∠CBN,
∵∠EDC+∠1=90°,∠1=∠2,
∴∠2+∠CBN=90°,
∴∠EFB=90°,即DF⊥ON;
(3)过D点作DG垂直于OM,交点为G,
∵四边形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAG+∠BAO=90°,
∵∠ABO+∠BAO=90°,
∴∠DAG=∠ABO,
又∵∠MON=90°,DG⊥OM,
∴△ADG≌△ABO,
∴DM=AO,GA=OB=5,
∵AB=13,OB=5,
根据勾股定理可得AO=12,
由(2)可知DF⊥ON,
又∵∠MON=90°,DG⊥OM,
∴四边形OFDM是矩形,
∴OF=DG=AO=12,DF=OM=17,
由(1)可知BE=DE,
∴△BEF的周长=DF+BF=17+(12-5)=24.
科目:初中数学 来源: 题型:
【题目】如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的对角线,相交于点,将沿所在直线折叠,得到.
(1)求证:四边形是菱形;
(2)若,当四边形是正方形时,等于多少?
(3)若,,是边上的动点,是边上的动点,那么的最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:sin(﹣x)=﹣sinx, cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny,则下列各式不成立的是( )
A. cos(﹣45°)= B. sin75°=
C. sin2x=2sinxcosx D. sin(x﹣y)=sinxcosy﹣cosxsiny
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自行车制造厂开发了一款新式自行车,计划6月份生产安装600辆,由于抽调不出足够的熟练工来完成新式自行车的安装,工厂决定招聘一些新工人:他们经过培训后也能独立进行安装.调研部门发现:1名热练工和2名新工人每日可安装8辆自行车;2名熟练工和3名新工人每日可安装14辆自行车.
(1)每名熟练工和新工人每日分别可以安装多少辆自行车?
(2)如果工厂招聘n名新工人(0<n<10).使得招聘的新工人和抽调熟练工刚好能完成6月份(30天) 的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)该自行车关于轮胎的使用有以下说明:本轮胎如安装在前轮,安全行使路程为11千公里;如安装在后轮,安全行使路程为9千公里.请问一对轮胎能行使的最长路程是多少千公里?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,问:乙校开学时的人数与原有的人数相差多少?( )
A.6B.9C.12D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在正方形网格中,若A(0,3),按要求回答下列问题
(1)在图中建立正确的平面直角坐标系;
(2)根据所建立的坐标系,写出B和C的坐标;
(3)计算△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com