精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为__

【答案】﹣2≤m<﹣1.

【解析】

根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.

y=x2﹣4,

∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,

∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,

∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,

解得,﹣2≤m<﹣1,

故答案为:﹣2≤m<﹣1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(32)B(4,﹣3)C(1,﹣1)

1)在图中作出关于y轴对称的

2)写出点的坐标(直接写答案);

3)在y轴上画出点P,使PB+PC最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),E是线段BC的中点分别以BC为直角顶点的△EAB和△EDC均是等腰直角三角形且在BC的同侧

(1)AEED的数量关系为________,AEED的位置关系为________;

(2)在图(2)以点E为位似中心作△EGF与△EAB位似HBC所在直线上的一点连接GHHD分别得到了图(2)和图(3).

①在图(2)FBE,△EGF与△EAB的相似比是1∶2,HEC的中点

求证GH=HDGHHD

②在图(3)FBE的延长线上,△EGF与△EAB的相似比是k∶1,BC=2,请直接写出CH的长为多少时恰好使得GH=HDGHHD用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10,加热到100,停止加热,水温开始下降,此时水温()与开机后用时(min)成反比例关系.直至水温降至30,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30时,接通电源后,水温y)和时间(min)的关系如图,为了在上午第一节下课时(845)能喝到不超过50的水,则接通电源的时间可以是当天上午的

A720 B730 C745 D750

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格上有6个斜三角形:

ABC,CDB,DEB,FBG,HGF,EKF.

在②~⑥中,与①相似的三角形的序号是____.(把你认为正确的都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,CEABE,弦ADCE延长线于点FCFAF

1)求证:

2)若BC=8tanDAC=,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,BC=5,P是矩形内部一动点,且满足∠PAB=PBC,则线段CP的最小值是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形与等腰直角三角形如图所示重叠在一起,其中,点上,连接全等吗?请说明理由.

如图为正方形对角线的交点,将一直角三角板的直角顶点与点重合转动三角板使两直角边始终与相交于点,使探索的数量关系,并说明理由.

如图,将中的“正方形”改成“长方形”,其它的条件不变,且,试求之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O的切线CPBA的延长线于点P,连接AE

1)求证:PC=PD

2)若AC=5cmBC=12cm,求线段AECE的长.

查看答案和解析>>

同步练习册答案