精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A(32)B(4,﹣3)C(1,﹣1)

1)在图中作出关于y轴对称的

2)写出点的坐标(直接写答案);

3)在y轴上画出点P,使PB+PC最小.

【答案】1)图见解析;(2;(3)图见解析.

【解析】

1)先根据轴对称的性质分别描出点,再顺次连接即可得;

2)根据点坐标关于y轴对称的变化规律即可得;

3)先根据轴对称的性质可得,再根据两点之间线段最短即可得.

1)先根据轴对称的性质分别描出点,再顺次连接即可得到,如图所示:

2)点坐标关于y轴对称的变化规律:横坐标变为相反数,纵坐标不变

3)由轴对称的性质得:

由两点之间线段最短得:当三点共线时,取得最小值,最小值为

如图,连接,与y轴的交点P即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于(  )

A. 80° B. 70° C. 65° D. 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O的直径AE10cm,∠B=∠EAC,则AC的长为(  )

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),求Wx之间的函数表达式(利润=收入-成本);

(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店经销甲、乙两种商品,现有如下信息:

信息1:甲商品的零售单价比乙商品的零售单价少1元;

信息2:按零售单价购买甲商品3件和乙商品2件,共付了12元.

请根据以上信息,解答下列问题:

(1)分别求甲、乙两种商品的零售单价;

(2)该商店平均每天卖出甲、乙两种商品各500件,经调查发现,两种商品零售单价每降0.1元,甲种商品每天可多销售30件,乙种商品每天可多销售20件,商店决定把两种商品的零售单价均下降m(0<m<1)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品的销售额之和为2500元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O的直径AB=10,弦BC=6,点D在O上(与点C在AB两侧),过D作⊙O的切线PD.

(1)如图,PD与AB的延长线交于点P,连接PC,若PC与O相切,求弦AD的长;

(2)如图,若PD∥AB,

求证:CD平分∠ACB;

求弦AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是反比例函数y=图象上一点,PM∥x轴交y轴于点M,MP=2,点Q的坐标为(4,0),连接PO、PQ,△OPM的面积为3,求该反比例函数的表达式是△OPQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx与双曲线y (k0)交于AB两点,且点A的横坐标为4.

(1)k的值;

(2)若双曲线y (k0)上一点C的纵坐标为8,求AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为__

查看答案和解析>>

同步练习册答案