精英家教网 > 初中数学 > 题目详情

【题目】如图,P是反比例函数y=图象上一点,PM∥x轴交y轴于点M,MP=2,点Q的坐标为(4,0),连接PO、PQ,△OPM的面积为3,求该反比例函数的表达式是△OPQ的面积.

【答案】y=,SOPQ=6.

【解析】

(1)根据反比例函数系数k的几何意义,由OPM的面积确定出比例系数k的值即可;(2)由PM=2得出点P的纵坐标,即OPQOQ上的高,结合点Q的坐标为(4,0)可得答案.

P(a,b),a>0,b>0,

PMx轴,

SOPMab=3,

ab=6,

P是反比例函数y=图象上一点,

b=,即k=ab=6,

∴反比例函数的表达式为y=

MP=2,即P点的横坐标为2,

y==3,

SOPQ×4×3=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点Ax轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OAB′,则点A′的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a2﹣2ab+b2=0.

(1)判断AOB的形状;

(2)如图②,COBAOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;

(3)将(2)中DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),BDECOE有何关系?直接说出结论,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(32)B(4,﹣3)C(1,﹣1)

1)在图中作出关于y轴对称的

2)写出点的坐标(直接写答案);

3)在y轴上画出点P,使PB+PC最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.

1)该商场两次共购进这种运动服多少套?

2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于,那么每套售价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=mx2﹣2mx﹣3m是二次函数.

(1)如果该二次函数的图象与y轴的交点为(0,3),求m的值;

(2)在给定的坐标系中画出(1)中二次函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.

1)求原计划每天生产的零件个数和规定的天数.

2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),E是线段BC的中点分别以BC为直角顶点的△EAB和△EDC均是等腰直角三角形且在BC的同侧

(1)AEED的数量关系为________,AEED的位置关系为________;

(2)在图(2)以点E为位似中心作△EGF与△EAB位似HBC所在直线上的一点连接GHHD分别得到了图(2)和图(3).

①在图(2)FBE,△EGF与△EAB的相似比是1∶2,HEC的中点

求证GH=HDGHHD

②在图(3)FBE的延长线上,△EGF与△EAB的相似比是k∶1,BC=2,请直接写出CH的长为多少时恰好使得GH=HDGHHD用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,BC=5,P是矩形内部一动点,且满足∠PAB=PBC,则线段CP的最小值是_______

查看答案和解析>>

同步练习册答案