精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DCAB的延长线相交于点P,弦CE平分∠ACB,交ABF,连接BE

(1)求证:AC平分∠DAB

(2)求证:PCPF

(3)tanABCAB14,求线段PC的长.

【答案】(1)(2)证明见解析;(3)24.

【解析】

(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;
(2)由条件可得∠CAO=PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;
(3)易证△PAC∽△PCB,由相似三角形的性质可得到 ,又因为tan∠ABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.

(1)证明:∵PD切⊙O于点C,

∴OC⊥PD,

又∵AD⊥PD,

∴OC∥AD,

∴∠ACO=∠DAC.

∵OC=OA,

∴∠ACO=∠CAO,

∴∠DAC=∠CAO,

即AC平分∠DAB;

(2)证明:∵AD⊥PD,

∴∠DAC+∠ACD=90°.

又∵AB为⊙O的直径,

∴∠ACB=90°.

∴∠PCB+∠ACD=90°,

∴∠DAC=∠PCB.

又∵∠DAC=∠CAO,

∴∠CAO=∠PCB.

∵CE平分∠ACB,

∴∠ACF=∠BCF,

∴∠CAO+∠ACF=∠PCB+∠BCF,

∴∠PFC=∠PCF,

∴PC=PF;

(3)解:∵∠PAC=∠PCB,∠P=∠P,

∴△PAC∽△PCB,

又∵tan∠ABC=

设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,

∵PC2+OC2=OP2

∴(4k)2+72=(3k+7)2

∴k=6 (k=0不合题意,舍去).

∴PC=4k=4×6=24.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合与探究:

1)操作发现:如图1,点D是等边△ABCBA上一动点(点D与点B不重合),连结DC,以DC为边在CD上方作等边△DCE,连结AE.你能发现线段AEBD之间的数量关系吗? 证明你发现的结论.

2)类比猜想:如图2,当动点D运动至等边△ABCBA的延长线上时,其余条件不变,猜想:(1)中的结论是否成立,不用说明理由.

3)拓展探究:如图3,当动点D在等边△ABCBA上运动时(点D与点B不重合),连结 DC,以DC为边在CD上方和下方分别作等边△DCE和等边△DCE,连结AEBE,探究:AEBEAB有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,边上一动点,由运动(与不重合),延长线上一动点,与点同时以相同的速度由延长线方向运动(不与重合),过,连接

1)证明:在运动过程中,点是线段的中点;

2)当时,求的长;

3)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°AC=8BC=6DE分别是ABBC上的点.把△ABC沿着直线DE折叠,顶点B对应点是点B′

1)如图1,点B′恰好落在线段AC的中点处,求CE的长;

2)如图2,点B′落在线段AC上,当BD=BE时,求B′C的长;

3)如图3EBC的中点,直接写出AB′的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.

(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)

(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)

测倾器的高度忽略不计,参考数据:tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎低端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:1号探测气球从海拔5m处匀速上升,同时,2号探测气球从海拔15m处匀速上升,且两个气球都上升了1h.两个气球所在位置的海拔y(单位:m)与上升时间x(单位:min)之间的函数关系如图所示,根据图中的信息,下列说法:

①上升20min时,两个气球都位于海拔25m的高度;

1号探测气球所在位置的海拔关于上升时间x的函数关系式是y=x+5(0≤x≤60)

③记两个气球的海拔高度差为m,则当0≤x≤50时,m的最大值为15m

其中,说法正确的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OAOB(或它们的反向延长线)相交于点DE.

当三角板绕点C旋转到CDOA垂直时(如图①),易证:ODOEOC

当三角板绕点C旋转到CDOA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段ODOEOC之间又有怎样的数量关系?请写出你的猜想,不需证明.

  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数xa(-x+52+b(-x+5)=ax-32+bx-3)都成立.

1)求二次函数y=ax2+bx的解析式;

2)若当-2xrr0)时,恰有ty1.5r成立,求tr的值.

查看答案和解析>>

同步练习册答案