【题目】已知:1号探测气球从海拔5m处匀速上升,同时,2号探测气球从海拔15m处匀速上升,且两个气球都上升了1h.两个气球所在位置的海拔y(单位:m)与上升时间x(单位:min)之间的函数关系如图所示,根据图中的信息,下列说法:
①上升20min时,两个气球都位于海拔25m的高度;
②1号探测气球所在位置的海拔关于上升时间x的函数关系式是y=x+5(0≤x≤60);
③记两个气球的海拔高度差为m,则当0≤x≤50时,m的最大值为15m.
其中,说法正确的个数是( )
A.0B.1C.2D.3
科目:初中数学 来源: 题型:
【题目】某校八年级五班为了了解同学们春节压岁钱的使用情况,对全班同学进行了问卷调查,每个同学只准选一项.调查问卷:
A.把压岁钱积攒起来,准备给爸妈买生日礼物,
B.把压岁钱积攒起来,准备给同学买生日礼物,
C.把压岁钱积攒起来,准备给自己买漂亮衣服,
D.把压岁钱积攒起来,准备买学习用品或课外书,
E.漫无目的,随便花,
班委会的同学把调查结果进行了统计,并绘制出条形统计图和扇形统计图(都不完整),如图1和图2所示:
根据统计图回答:
(1)该班共有学生______人.
(2)在扇形统计图中,标出所占的百分比,并计算所对应的圆心角度数.
(3)补全条形统计图.
(4)根据以上信息,请你给班同学就“如何使用压岁钱?”提出合理建议.(不超过30字)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:PC=PF;
(3)若tan∠ABC=,AB=14,求线段PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,对角线AC、BD相交于点O.
(1)尺规作图:以OA、OD为边,作矩形OAED(不要求写作法,但保留作图痕迹);
(2)若在菱形ABCD中,∠BAD=120 °,AD=2,求所作矩形OAED的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片ABCD中,AB=8,BC=16,将矩形纸片沿EF折叠,使点C与点A重合.
(1)判断△AEF的形状,并说明理由;
(2)求折痕EF的长度;
(3)如图2,展开纸片,连接CF,则点E到CF的距离是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且.连接PB,试探究PA,PB,PC满足的等量关系.
图1 图2
(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到,连接,如图1所示.
由≌可以证得是等边三角形,再由可得∠APC的大小为 度,进而得到是直角三角形,这样可以得到PA,PB,PC满足的等量关系为 ;
(2)如图2,当α=120°时,请参考(1)中的方法,探究PA,PB,PC满足的等量关系,并给出证明;
(3)PA,PB,PC满足的等量关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.
(1)求证:△ABE≌△BCN;
(2)若N为AB的中点,求tan∠ABE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com