4£®¡°2015ÑïÖݼøÕæ¹ú¼Ê°ë³ÌÂíÀ­ËÉ¡±µÄÈüʹ²ÓÐÈýÏA¡¢¡°°ë³ÌÂíÀ­ËÉ¡±¡¢B¡¢¡°10¹«À¡¢C¡¢¡°ÃÔÄãÂíÀ­ËÉ¡±£®Ð¡Ã÷²Î¼ÓÁ˸ÃÏîÈüʵÄÖ¾Ô¸Õß·þÎñ¹¤×÷£¬×éί»áËæ»ú½«Ö¾Ô¸Õß·ÖÅäµ½Èý¸öÏîÄ¿×飮
£¨1£©Ð¡Ã÷±»·ÖÅäµ½¡°ÃÔÄãÂíÀ­ËÉ¡±ÏîÄ¿×éµÄ¸ÅÂÊΪ$\frac{1}{3}$£®
£¨2£©Îª¹ÀËã±¾´ÎÈüʲμӡ°ÃÔÄãÂíÀ­ËÉ¡±µÄÈËÊý£¬Ð¡Ã÷¶Ô²¿·Ö²ÎÈüÑ¡ÊÖ×÷Èçϵ÷²é£º
µ÷²é×ÜÈËÊý501002005001000
²Î¼Ó¡°ÃÔÄãÂíÀ­ËÉ¡±ÈËÊý214579200401
²Î¼Ó¡°ÃÔÄãÂíÀ­ËÉ¡±ÆµÂÊ0.3600.4500.3950.4000.401
¢ÙÇë¹ÀËã±¾´ÎÈüʲμӡ°ÃÔÄãÂíÀ­ËÉ¡±ÈËÊýµÄ¸ÅÂÊΪ0.4£®£¨¾«È·µ½0.1£©
¢ÚÈô±¾´Î²ÎÈüÑ¡ÊÖ´óÔ¼ÓÐ30000ÈË£¬ÇëÄã¹À¼Æ²Î¼Ó¡°ÃÔÄãÂíÀ­ËÉ¡±µÄÈËÊýÊǶàÉÙ£¿

·ÖÎö £¨1£©ÀûÓøÅÂʹ«Ê½Ö±½ÓµÃ³ö´ð°¸£»
£¨2£©¢ÙÀûÓñí¸ñÖÐÊý¾Ý½ø¶ø¹À¼Æ³ö²Î¼Ó¡°ÃÔÄãÂíÀ­ËÉ¡±ÈËÊýµÄ¸ÅÂÊ£»
¢ÚÀûÓâÙÖÐËùÇ󣬽ø¶øµÃ³ö²Î¼Ó¡°ÃÔÄãÂíÀ­ËÉ¡±µÄÈËÊý£®

½â´ð ½â£º£¨1£©¡ßСÃ÷²Î¼ÓÁ˸ÃÏîÈüʵÄÖ¾Ô¸Õß·þÎñ¹¤×÷£¬×éί»áËæ»ú½«Ö¾Ô¸Õß·ÖÅäµ½Èý¸öÏîÄ¿×飬
¡àСÃ÷±»·ÖÅäµ½¡°ÃÔÄãÂíÀ­ËÉ¡±ÏîÄ¿×éµÄ¸ÅÂÊΪ£º$\frac{1}{3}$£»
¹Ê´ð°¸Îª£º$\frac{1}{3}$£»

£¨2£©¢ÙÓɱí¸ñÖÐÊý¾Ý¿ÉµÃ£º±¾´ÎÈüʲμӡ°ÃÔÄãÂíÀ­ËÉ¡±ÈËÊýµÄ¸ÅÂÊΪ£º0.4£»
¹Ê´ð°¸Îª£º0.4£»
¢Ú²Î¼Ó¡°ÃÔÄãÂíÀ­ËÉ¡±µÄÈËÊýÊÇ£º30000¡Á0.4=12000£¨ÈË£©£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÀûÓÃÆµÂʹÀ¼Æ¸ÅÂÊ£¬ÕýÈ·Àí½âƵÂÊÓë¸ÅÂÊÖ®¼äµÄ¹ØÏµÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬Ôڱ߳¤Îª6µÄÕý·½ÐÎABCDÖУ¬EÊÇABµÄÖе㣬ÒÔEΪԲÐÄ£¬EDΪ°ë¾¶×÷°ëÔ²£¬½»A¡¢BËùÔÚµÄÖ±ÏßÓÚM¡¢NÁ½µã£¬·Ö±ðÒÔÖ±¾¶MD¡¢NDΪֱ¾¶×÷°ëÔ²£¬ÔòÒõÓ°²¿·ÖÃæ»ýΪ£¨¡¡¡¡£©
A£®9$\sqrt{5}$B£®18$\sqrt{5}$C£®36$\sqrt{5}$D£®72$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺
£¨1£©2$\sqrt{3}$+3$\sqrt{12}$-$\sqrt{48}$                   
£¨2£©£¨$\sqrt{3}$-2£©2-$\sqrt{3}$¡Á$\sqrt{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺
£¨1£©x3¡Â£¨x2£©3¡Âx5                  
£¨2£©£¨x+1£©£¨x-3£©+x£¨2-x£©
£¨3£©£¨-$\frac{1}{3}$£©0+£¨$\frac{1}{2}$£©-2+£¨0.2£©2015¡Á52015-|-1|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ä³Ð£Ñо¿ÐÔѧϰС×éÔÚѧϰ¶þ´Î¸ùʽ$\sqrt{{a}^{2}}$=|a|Ö®ºó£¬Ñо¿ÁËÈçÏÂËĸöÎÊÌ⣬ÆäÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÔÚa£¾1µÄÌõ¼þÏ»¯¼ò´úÊýʽa+$\sqrt{{a}^{2}-2a+1}$µÄ½á¹ûΪ2a-1
B£®µ±a+$\sqrt{{a}^{2}-2a+1}$µÄÖµºãΪ¶¨ÖµÊ±£¬×ÖĸaµÄȡֵ·¶Î§ÊÇa¡Ü1
C£®a+$\sqrt{{a}^{2}-2a+1}$µÄÖµËæa±ä»¯¶ø±ä»¯£¬µ±aȡij¸öÊýֵʱ£¬ÉÏÊö´úÊýʽµÄÖµ¿ÉÒÔΪ$\frac{1}{2}$
D£®Èô$\sqrt{{a}^{2}-2a+1}$=£¨$\sqrt{a-1}$£©2£¬Ôò×Öĸa±ØÐëÂú×ãa¡Ý1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Å×ÎïÏßy=ax2+£¨a+m£©x-$\frac{1}{2}$m¾­¹ýµãA£¨1£¬0£©¡¢B£¨x2£¬0£©£¬½»yÖáÕý°ëÖáÓÚµãC£¬ÇÒS¡÷ABC=$\frac{1}{2}$£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®£¨2015-¦Ð£©0-$\sqrt{12}+2cos30¡ã+|3-2\sqrt{3}|$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÏÈÔĶÁСÁÁ½â´ðµÄÎÊÌ⣨1£©£¬ÔÙ·ÂÕÕËûµÄ·½·¨½â´ðÎÊÌ⣨2£©
ÎÊÌ⣨1£©£º¼ÆËã3.1468¡Á7.1468-0.14682
СÁÁµÄ½â´ðÈçÏ£º
½â£ºÉè0.1468=a£¬Ôò3.1468=a+3£¬7.1468=a+7
ԭʽ=£¨a+3£©£¨a+7£©-a2
=a2+10a+21-a2
=10a+21
°Ña=0.1468´úÈë
ԭʽ=10¡Á0.1468+21=22£¬468
¡à3.1468¡Á7.1468-0.14682=22.468
ÎÊÌ⣨2£©£º¼ÆË㣺67897¡Á67898-67896¡Á67899£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®£¨1£©£¨-2£©2015•£¨$\frac{1}{2}$£©2015
£¨2£©-x•£¨3xy-6x2y2£©¡Â£¨3x2y£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸