【题目】一块含45°的直角三角板ABC, AB=AC, ∠BAC=90°, 点D为射线CB上一点,且不与点C,点B重合,连接AD.过点A作线段AD的垂线l,在直线l上,截取AE=AD(点E与点C在直线AD的同侧),连接CE.
(1)当点D在线段CB上时,如图1,线段CE与BD的数量关系为____________,位置关系为___________;
(2)当点D在线段CB的延长线上时,如图2,
①请将图形补充完整;
②(1)中的结论是否仍成立?如果成立,请证明;如果不成立,请说明理由.
【答案】(1)CE=BD, CE⊥BD;(2)①见解析,②成立,理由见解析
【解析】
(1)在图1中证明△ABD≌△ACE,得到CE=BD,∠B=∠ACE=45°即可得到∠BCE=90°,即CE⊥BD;
(2)①根据题意,画出图形即可;
②与(1)同理,证明△ADB≌△AEC,然后得到CE=BD,然后得到∠ABC=∠ACB=45°,然后得到∠BCE=90°,即CE⊥BD.
证明:(1)∵AD⊥l,
∴∠DAE=∠BAC=90°,
∴∠BAD+∠DAC=∠DAC+∠CAE=90°,
∴∠BAD=∠CAE,
∵AD=AE,AB=AC,
∴△ABD≌△ACE,
∴CE=BD,∠B=∠ACE=45°,
∴∠ACB+∠ACE=45°+45°=90°,
∴∠BCE=90°,即CE⊥BD;
故答案为:CE=BD,CE⊥BD;
(2)①补全图形,如图:
②CE=BD,CE⊥BD仍成立;
证明:∵AD⊥AE
∴∠DAE=90°
∵∠BAC=90°
∴∠DAE∠1=∠BAC∠1
即∠2=∠3
∵AB=AC, AD=AE
∴△ADB≌△AEC
∴CE=BD,∠ACE=∠ABD
∵∠ABC=∠ACB=45°
∴∠ACE=∠ABD=135°
∴∠DCE=∠ACE∠ACB=90°
∴CE⊥BD.
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )
A. 3 B. C. 4 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5.
(1)设四边形PQCB的面积为S,求S与t的关系式;
(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.
(1)根据题意,可求得OE= ;
(2)求证:△ADO≌△ECO;
(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的直角边在轴的正半轴上,点在第象限,将绕点按逆时针方向旋转至,使点的对应点落在轴的正半轴上,已知,.
求点和点的坐标;
求经过点和点的直线所对应的一次函数解析式,并判断点是否在直线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校数学兴趣小组在楼的顶部处测得该楼正前方旗杆的顶端的俯角为,在楼的底部处测得旗杆的顶端的仰角为,已知旗杆的高度为,根据测得的数据,计算楼的高度(结果保留整数).
参考数据:,,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=x2﹣x﹣3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,顶点为D
(1)求出点A,B,D的坐标;
(2)如图1,若线段OB在x轴上移动,且点O,B移动后的对应点为O′,B′.首尾顺次连接点O′、B′、D、C构成四边形O′B′DC,请求出四边形O′B′DC的周长最小值.
(3)如图2,若点M是抛物线上一点,点N在y轴上,连接CM、MN.当△CMN是以MN为直角边的等腰直角三角形时,直接写出点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )
A. 19.2° B. 8° C. 6° D. 3°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com