精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,的直角边轴的正半轴上,点在第象限,将绕点按逆时针方向旋转至,使点的对应点落在轴的正半轴上,已知

求点和点的坐标;

求经过点和点的直线所对应的一次函数解析式,并判断点是否在直线上.

【答案】(1)的坐标为点的坐标为;(2), 在直线上.

【解析】

(1)Rt△OAB中求得AB=1,OA=,即可求得点B的坐标,根据旋转变换的特点,画出草图,过点垂直于轴,垂足为中,求得OD的长,即可得点A′的坐标;(2)根据题意可得点的坐标为,点的坐标为,利用待定系数法求出直线的解析式,再把点A代入解析式即可解答

中,

的坐标为

过点垂直于轴,垂足为

中,

点的坐标为

的坐标为,点的坐标为

设所求的解析式为,则

解得,

经过点和点的直线所对应的一次函数解析式为

时,

在直线上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2,BC=4,D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与D切于点H,此时两直角边与AD交于E,F两点,则tanEFO的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别延长□ABCD的边CD,ABE,F,使DE=BF,连接EF,分别交AD,BCG,H,连结CG,AH.

求证:CG∥AH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),P为ABC所在平面上一点,且APB=BPC=CPA=120°,则点P叫做ABC的费马点.

(1)如果点P为锐角ABC的费马点,且ABC=60°.

①求证:ABP∽△BCP;

②若PA=3,PC=4,则PB=

(2)已知锐角ABC,分别以AB、AC为边向外作正ABE和正ACD,CE和BD 相交于P点.如图(2)

①求CPD的度数;

②求证:P点为ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】北京时间2015731日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一块含45°的直角三角板ABC, AB=AC, BAC=90° D为射线CB上一点,且不与点C,B重合,连接AD.过点A作线段AD的垂线l,在直线l上,截取AE=AD(E与点C在直线AD的同侧),连接CE.

1)当点D在线段CB上时,如图1,线段CEBD的数量关系为____________,位置关系为___________

2)当点D在线段CB的延长线上时,如图2,

①请将图形补充完整;

②(1)中的结论是否仍成立?如果成立,请证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一斜坡坡顶处的同一水平线上有一古塔,为测量塔高,数学老师带领同学在坡脚处测得斜坡的坡角为,且,塔顶处的仰角为,他们沿着斜坡攀行了米,到达坡顶处,在处测得塔顶的仰角为

(1)求斜坡的高度

(2)求塔高

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1y=﹣x+mx轴交于点A,直线l2y2x+ny轴交于点B,与直线l1交于点P22),则△PAB的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线y=2x+2与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)的图象交于点M(a,4).

(1)求反比例函数y=(x>0)的表达式;

(2)若点C在反比例函数y=(x>0)的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.

查看答案和解析>>

同步练习册答案