精英家教网 > 初中数学 > 题目详情

【题目】如图(1),P为ABC所在平面上一点,且APB=BPC=CPA=120°,则点P叫做ABC的费马点.

(1)如果点P为锐角ABC的费马点,且ABC=60°.

①求证:ABP∽△BCP;

②若PA=3,PC=4,则PB=

(2)已知锐角ABC,分别以AB、AC为边向外作正ABE和正ACD,CE和BD 相交于P点.如图(2)

①求CPD的度数;

②求证:P点为ABC的费马点.

【答案】(1)证明见解析(2)证明见解析

【解析】

试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;

②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;

(2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到1=2,再由对顶角相等,得到5=6,即可求出所求角度数;

②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到APF为60°,由APD+DPC,求出APC为120°,进而确定出APB与BPC都为120°,即可得证.

试题解析:(1)证明:①∵∠PAB+PBA=180°﹣APB=60°,PBC+PBA=ABC=60°,

∴∠PAB=PBC,

∵∠APB=BPC=120°,

∴△ABP∽△BCP,

②解:∵△ABP∽△BCP,

PB2=PAPC=12,

PB=2

(2)解:①∵△ABE与ACD都为等边三角形,

∴∠BAE=CAD=60°,AE=AB,AC=AD,

∴∠BAE+BAC=CAD+BAC,即EAC=BAD,

ACE和ABD中,

∴△ACE≌△ABD(SAS),

∴∠1=2,

∵∠3=4,

∴∠CPD=6=5=60°;

②证明:∵△ADF∽△CFP,

AFPF=DFCF,

∵∠AFP=CFD,

∴△AFP∽△CDF.

∴∠APF=ACD=60°,

∴∠APC=CPD+APF=120°,

∴∠BPC=120°,

∴∠APB=360°﹣BPC﹣APC=120°,

P点为ABC的费马点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,∠ACB=900,且A04),点C20),BE⊥x轴于点E,一次函数y=x+b经过点B,交y轴于点D

1求证;△AOC≌△CEB

2△ABD的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知 三角形ABC各顶点在格点上

1)直接写出三角形ABC的三个顶点的坐标

A   B   C   

2)画出三角形ABC关于y轴对称的三角形A′B′C′.

3)求三角形ABC的面积;

4)直接与出A′C′y轴交点的坐标   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数图象经过点M(2,6)

(1)求这个函数的解析式,并指出它的图象位于哪些象限?

(2)在这个图象上任取两个点A(a,b)和B(a′,b′),如果a>a′,那么bb′怎样的大小关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a0),点C的坐标为(0b),且ab满足+|b6|0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动.

1a   b   ,点B的坐标为   

2)当点P移动3.5秒时,求出点P的坐标;

3)在移动过程中,若点Px轴的距离为4个单位长度时,求点P移动的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,AB=AC,BAC=90°AE是过A点的一条直线,且B,CAE的异侧,BDAED,CEAEE.

(1)ABDCAE全等吗?BDDE+CE相等吗?请说明理由。

(2)如图2,若直线AE绕点A旋转到图②所示的位置(BD<CE)时,其余条件不变,则BDDECE的关系如何?请说明理由

(3)如图3,若直线AE绕点A旋转到图③所示的位置(BD>CE)时,其余条件不变,则BDDECE的关系如何?

(4)根据以上的讨论,请用简洁的语言表达BDDECE的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ACBCDCECAC=BCDC=EC,图中AEBD有怎样的关系(数量关系和位置关系)?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知二次函数y=k(x﹣ax﹣b),其中a≠b.

(1)若此二次函数图象经过点(0,k),试求a,b满足的关系式.

(2)若此二次函数和函数y=x2﹣2x的图象关于直线x=2对称,求该函数的表达式.

(3)若a+b=4,且当0≤x≤3时,有1≤y≤4,求a的值.

查看答案和解析>>

同步练习册答案