精英家教网 > 初中数学 > 题目详情

【题目】如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )

A.0 B.1 C.2 D.3

【答案】D

【解析】

试题因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.

因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)-7p格,

这时P是整数,且使0≤k(k+1)-7p≤6,分别取k=1,2,3,4,5,6,7时,

k(k+1)-7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,

若7<k≤10,设k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),

由此可知,停棋的情形与k=t时相同,

故第2,4,5格没有停棋,

即这枚棋子永远不能到达的角的个数是3.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),P为ABC所在平面上一点,且APB=BPC=CPA=120°,则点P叫做ABC的费马点.

(1)如果点P为锐角ABC的费马点,且ABC=60°.

①求证:ABP∽△BCP;

②若PA=3,PC=4,则PB=

(2)已知锐角ABC,分别以AB、AC为边向外作正ABE和正ACD,CE和BD 相交于P点.如图(2)

①求CPD的度数;

②求证:P点为ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个分数(分子、分母均为正整数)的分母比它的分子大5.

(1)若将这个分数的分子加上14,分母减去1,则所得的分数是原分数的倒数,求这个分数;

(2)若将这个分数的分子、分母同时加上4,试比较所得的分数和原分数的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=6,动点P从点A出发,以每秒 个单位长度的速度沿线段AD运动,动点Q从点D出发,以每秒2个单位长度的速度沿折线段D﹣O﹣C运动,已知P、Q同时开始移动,当动点P到达D点时,P、Q同时停止运动.设运动时间为t秒.

(1)当t=1秒时,求动点P、Q之间的距离;

(2)若动点P、Q之间的距离为4个单位长度,求t的值;

(3)若线段PQ的中点为M,在整个运动过程中;直接写出点M运动路径的长度为  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点O是等腰直角三角形ABC斜边上的中点,AB=BC,EAC上一点,连结EB.

(1) 如图1,若点E在线段AC上,过点AAMBE,垂足为M,交BO于点F.求证:OE=OF

(2)如图2,若点EAC的延长线上,AMBE于点M,交OB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是Rt△ABC斜边BC上的高.

(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);

(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;

(3)在(2)的条件下,连结DEDH.求证:ED⊥HD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.

1)已知凸五边形的各条边都相等.

①如图1,若,求证:五边形是正五边形;

②如图2,若,请判断五边形是不是正五边形,并说明理由:

2)判断下列命题的真假.(在括号内填写

如图3,已知凸六边形的各条边都相等.

①若,则六边形是正六边形;(   

②若,则六边形是正六边形.    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线x轴交于点A,与y轴交于点C.抛物线经过AC两点,且与x轴交于另一点BB在点A右侧

1求抛物线的解析式及点B坐标;

2若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

3试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案