【题目】如图,在平面直角坐标系中,二次函数y=ax2﹣2x+c的图象与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方的抛物线上一动点.
(1)求二次函数的表达式;
(2)当点P运动到抛物线顶点时,求四边形ABPC的面积;
(3)点Q是x轴上的一个动点,当点P与点C关于对称轴对称且以点B、C、P、Q为顶点的四边形是平行四边形时,求点Q的坐标.
【答案】(1)y=x2﹣2x﹣3;(2)9;(3)Q1(5,0),Q2(1,0).
【解析】
(1)运用待定系数法将B(3,0),C(0,-3)两点的坐标代入y=ax2﹣2x+c,求出解析式即可;
(2)将四边形ABPC的面积,面积分割为S△AOC+S△OCP+S△OPB求出三个三角形的面积即可得出;
(3)求出B、C、P、Q的坐标再根据平行四边形的性质即可解答
解:(1)将B(3,0),C(0,﹣3)两点的坐标代入y=ax2﹣2x+c得:
,
解得 ,
∴二次函数的表达式为:y=x2﹣2x﹣3;
(2)如图,当点P运动到抛物线顶点时,连接AC,PC,PB,PO,作PM⊥AB,PN⊥OC,
∵二次函数的表达式为y=x2﹣2x﹣3;
∴P点的坐标为(1,﹣4),即PN=1,PM=4,还可得出OB=3,OC=3,AO=1,
∴四边形ABPC的面积=S△AOC+S△OCP+S△OPB
=,
= ,
=9;
(3)∵点P与点C关于对称轴对称,点C(0,﹣3),
∴P(2,﹣3),PC=2,
∵点Q在x轴上,设点Q(x,0),
而B(3,0),
∴BQ=|x﹣3|,
若以点B、C、P、Q为顶点的四边形是平行四边形时,
则BQ∥PC,且BQ=PC,
∴|x﹣3|=2,
解得:x1=5,x2=1,
∴Q1(5,0),Q2(1,0).
科目:初中数学 来源: 题型:
【题目】如图1,在中,,点分别是边的中点,连接.将绕点逆时针方向旋转,记旋转角为.
问题发现
当时, ;当时, .
拓展探究
试判断:当时,的大小有无变化?请仅就图2的情形给出证明.
问题解决
绕点逆时针旋转至三点在同一条直线上时,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、.“园艺小清新之旅”和.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.
(1)李欣选择线路.“园艺小清新之旅”的概率是多少?
(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进一种商品,单价30元,试销中发现这种商品每天的销售量夕(件)与每件的销售价(元)满足关系:=100-2.若商店每天销售这种商品要获得200元的销售利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是( )
A. 26B. 24C. 22D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.某商场为缓解“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说得对?请你判断并计算出正确的结果.(结果精确到0.1 m,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com