精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的顶点AD分别在x轴、y轴上,∠ADO30°OA2,反比例函y经过CD的中点M,那么k_____

【答案】+6

【解析】

先根据△CDE≌△DAO,得到DE=AO=2DO=2=CE,再根据FCE的中点,即可得到F2+2),最后根据反比例函数y=的图象过CE的中点F,即可得到k的值.

解:如图,作CEy轴于点E

∵正方形ABCD的顶点AD分别在x轴、y轴上,

∴∠CED=∠DOA90°,∠DCE=∠ADOCDDA

∴△CDE≌△DAOAAS),

DEAO2

又∵∠ODA30°

RtAOD中,AD2AO4DO2CE

EO2+2

C22+2),D02),

MCD的中点,

M1+2),

∵反比例函y经过CD的中点M

k1+2)=+6

故答案为:+6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】20195月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.

第一环节:写字注音、成语故事、国学常识、成语接龙(分别用表示);

第二环节:成语听写、诗词对句、经典通读(分别用表示)

1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果

2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】横店国际马拉松将于2015517日鸣枪开跑,这个赛事的举办掀起了当地跑马拉松的热潮,如图是甲、乙两位马拉松爱好者在一次10公里的“迷你马拉松”训练中两人分别跑的路程y(公里)与时间x(分钟)的函数关系图象,他们同时出发,乙在75分钟的时候到达终点,并在终点等候甲,在甲跑完这个“迷你马拉松”的过程中,(1)甲前半程的速度是公里/分;(2)乙在冲刺阶段的速度公里/分;(3)在前半程甲一直领先于乙;(4)甲与乙刚好相距0.1公里的次数是4次.以上说法正确的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在RtABC 中, DE是斜边BC上两动点,且∠DAE=45°,将△绕点逆时针旋转90后,得到△,连接.

1)试说明:△≌△

(2)当BE=3,CE=9时,求∠BCF的度数和DE的长; 

3)如图2△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°D是斜边BC所在直线上一点,BD=3BC=8,求DE2的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yax22x+c的图象与x轴交于AB两点,点A在原点的左侧,点B的坐标为(30),与y轴交于点C0,﹣3),点P是直线BC下方的抛物线上一动点.

1)求二次函数的表达式;

2)当点P运动到抛物线顶点时,求四边形ABPC的面积;

3)点Qx轴上的一个动点,当点P与点C关于对称轴对称且以点BCPQ为顶点的四边形是平行四边形时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为更好地开展传统文化进校园活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.

最喜爱的传统文化项目类型频数分布表

根据以上信息完成下列问题:

(1)直接写出频数分布表中a的值;

(2)补全频数分布直方图;

(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中既是轴对称图形,又是中心对称图形的是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了保护环境,某开发区综合治理指挥部决定购买AB两种型号的污水处理设备共10台(注:要求同时有两种型号),买2A型设备和3B型设备共需要90万元,其中A型设备单价是B型设备单价的1.5倍;经预算,指挥部购买污水处理设备经费不超过180万元,请解答下列问题

1A型设备和B型设备的单价各是多少万元?

2)指挥部有哪几种购买方案?

3)若A型设备月处理污水量200吨、B型设各月处理污水量180吨,现要求月处理污水量不低于1840吨,设购买设备需要总费用为y万元,A型设备x台,请写出yx的函数解析式,并根据函数性质选择更省钱的购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料,并完成相应的任务.

三等分任意角问题是数学史上一个著名的问题,直到1837年,数学家才证明了三等分任意角是不能用尺规完成的.

在探索中,出现了不同的解决问题的方法

方法一:

如图(1),四边形ABCD是矩形,FDA延长线上一点,GCF上一点,CFAB交于点E,且∠ACG=∠AGC,∠GAF=∠F,此时∠ECBACB

方法二:

数学家帕普斯借助函数给出一种三等分锐角的方法(如图(2)):将给定的锐角∠AOB置于平面直角坐标系中,边OBx轴上,边OA与函数y的图象交于点P,以点P为圆心,以2OP长为半径作弧交图象于点R.过点Px轴的平行线,过点Ry轴的平行线,两直线相交于点M,连接OM得到∠AOB,过点PPHx轴于点H,过点RRQPH于点Q,则∠MOBAOB

1)在方法一中,若∠ACF40°GF4,求BC的长.

2)完成方法二的证明.

查看答案和解析>>

同步练习册答案