分析 (1)连接OD、AD.只要证明OD∥AE,由DE⊥AC,推出DE⊥OD即可解决问题;
(2)连接BC.只要证明△DFO∽△BCA,推出$\frac{OF}{AC}$=$\frac{OD}{AB}$=$\frac{1}{2}$即可解决问题;
解答 (1)证明:连接OD、AD.![]()
∵点D是$\widehat{BC}$的中点,
∴$\widehat{BD}$=$\widehat{AD}$,
∴∠DAO=∠DAC,
∵OA=OD,
∴∠DAO=∠ODA,
∴∠DAC=∠ODA,
∴OD∥AE,
∵DE⊥AE,
∴∠AED=90°,
∴∠AED=∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切线.
(2)解:连接BC.![]()
∵AB是⊙O直径,
∴∠ACB=90°,
∵OD∥AE,
∴∠DOB=∠EAB,
∵∠DFO=∠ACB=90°,
∴△DFO∽△BCA,
∴$\frac{OF}{AC}$=$\frac{OD}{AB}$=$\frac{1}{2}$,
即$\frac{2}{AC}$=$\frac{1}{2}$,
∴AC=4.
点评 本题考查切线的判定和性质、垂径定理、勾股定理、相似三角形的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 25° | B. | 50° | C. | 70° | D. | 75° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ∠1+∠2-∠3=90° | B. | ∠1-∠2+∠3=180° | C. | ∠2+∠3-∠1=180° | D. | ∠1+∠2+∠3=180° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com