【题目】如图,A是△PBD的边BD上一点,以AB为直径的切PD于点C,过D作DEPO交PO延长线于点E,且有∠EDB=∠EPB.
(1)求证:PB是圆O的切线.
(2)若PB=6,DB=8,求的半径.
【答案】(1)详见解析 (2)3
【解析】
(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证
(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD-PC求出CD的长在直角三角形OCD中,设OC=r,则有OD=8-r,利用勾股定理列出关于r的方程求出方程的解得到r的值,即为圆的半径
∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,
∴∠OBP=∠E=90°,
∵OB为圆的半径
∴PB为圆O的切线;
(2)在R△PBD中,PB=6,DB=8,根据勾股定理得:PD==10,
∵PD与PB都为圆的切线,
∴PC=PB=6
∴DC=PD-PC=10-6=4
在R△CDO中,设OC=T,则有
D0=8-r,
根据勾股定理得: (8-r)2=r2+42
解得:r=3,
则圆的半径为3
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP的长及点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形的苗圃圆.其中一边靠墙,另外三边用长为40m的篱笆围成.已知墙长为18m(如图所示),设这个苗圃园垂直于墙的一边AB为xm
(1)用含有x的式子表示AD,并写出x的取值范围;
(2)若苗圃园的面积为192m2平方米,求AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.
请根据图中的信息,解答下列问题:
(1)在这次调查中,一共抽取了 名学生;a= %;C级对应的圆心角为 度.
(2)补全条形统计图;
(3)若该校共有2000名学生,请你估计该校D级学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.
(1)从口袋中随机取出一个球(不放回),接着再取出一个球,请用树形图或列表的方法求取出的两个球一个是红色球,一个是黄色球的概率;
(2)小明往该口袋中又放入m个红色球和(m+2)个黄色球,再从口袋中随机取出一个球,这个球是黄色球的概率为,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,则下面结论中不正确的是( )
A.ac<0
B.2a+b=0
C.b2<4ac
D.方程ax2+bx+c=0的根是﹣1,3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=120°,点O在BC上,⊙O经过点A,点C,且交BC于点D,直径EF⊥AC于点G.
(1)求证:AB是⊙O的切线;
(2)若AC=8,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:
①2a+b=0,
②9a+3b+c=0,
③当-1≤x≤3时,y<0,
④若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2.
其中正确的是( )
A.①②④B.①②③C.①②D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数;
(3)若AB=4,AD=1,求CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com