【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数;
(3)若AB=4,AD=1,求CD的长.
【答案】(1)见解析;(2)∠BEF=67.5°;(3).
【解析】
(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)
(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF的度数;
(3)易证△DBE是直角三角形,由勾股定理可求出DE的长,进而可求出CD的长.
解:(1)证明:由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
在△ACD与△BCE中,
,
∴△ACD≌△BCE(SAS)
(2)∵∠ACB=90°,AC=BC,
∴∠A=45°,
由(1)可知:∠A=∠CBE=45°,
∵AD=BF,
∴BE=BF,
∴∠BEF=67.5°;
(3)∵△ACD≌△BCE,
∴AD=BE=1,∠CBE=∠A=45°,
∵AB=4,
∴DB=3,
∵∠DBE=∠CBA+∠CBE=90°,
∴△DBE是直角三角形,
∴DE==,
∵△CDE是等腰直角三角形,
∴CD=CE=.
科目:初中数学 来源: 题型:
【题目】如图,A是△PBD的边BD上一点,以AB为直径的切PD于点C,过D作DEPO交PO延长线于点E,且有∠EDB=∠EPB.
(1)求证:PB是圆O的切线.
(2)若PB=6,DB=8,求的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )
A. 30B. 36C. 54D. 72
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两队在比赛时,路程y(米)与时间x(分钟)的函数图像如图所示,根据函数图像填空和解答问题:
(1)最先到达终点的是____________队,比另一队领先__________分钟到达.
(2)在比赛过程中,乙队在_____分钟和_____分钟时两次加速.
(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧的中点BD交AC于点E.
(1)求证:AD2=DEDB.
(2)若BC=5,CD=,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=AC=5cm,BC=8 cm,点P在边BC上沿B到C的方向以每秒1cm的速度运动(不与点B,C重合),点Q在AC上,且满足∠APQ=∠B,设点P运动时间为t秒,当△APQ是等腰三角形时,t=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的倍,那么称这样的方程为“倍根方程”,例如,一元二次方程的两个根是和,则方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,则= .
(2)若关于的一元二次方程是“倍根方程”,则,,之间的关系为 .
(3)若是“倍根方程”,求代数式的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com