【题目】解下列不等式(组),并把题的解集在数轴上表示出来;
【答案】(1);(2)x<-12;(3)-3<x<1,图见详解;(4)1≤x<4,图见详解.
【解析】
(1)由题意先移项,再去分母,化系数为1即可;
(2)根据题意先去括号,再移项,合并同类项,把x的系数化为1即可;
(3)由题意分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可;
(4)根据题意分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
解:(1)
移项得:,
去分母得:,
把x的系数化为1得:.
(2)
去括号得:-6+2x>3x+6,
移项得:2x-3x>6+6,
合并同类项得:-x>12,
把x的系数化为1得:x<-12.
(3),
由①得,x<1,
由②得,x>-3,
故不等式组的解集为:-3<x<1.
在数轴上表示为:
(4),
由①得,x≥1,由②得,x<4,
故不等式组的解集为:1≤x<4.
在数轴上表示为:
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上。
(1)将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′,补全△A′B′C′;
(2)若连接AA′、BB′,则这两条线段之间的关系是________________;
(3)在图中画出△ABC的高CD;
(4)△A′B′C′的面积为________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴相交于点,与直线相交于点.
(1)求点的坐标;
(2)请判断的形状并说明理由;
(3)动点从原点出发,以每秒个单位的速度沿着的路线向点匀速运动(不与点、重合),过点分别作轴于,轴于,设运动秒时,矩形与重叠部分的面积为,求与之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间(分钟)进行了调查.现把调查结果分成四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.
请根据以上的信息,解答下列问题:
(1)扇形统计图所在的圆心角的度数为 ;
(2)补全频数分布直方图;
(3)已知该校七年级共有1000名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降,如图,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:我们把对角线相等的四边形叫做和美四边形.
请举出一种你所学过的特殊四边形中是和美四边形的例子.
如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;
如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:
①abc>0;②b2=4ac; ③4a+2b+c>0;④3a+c>0,
其中,正确的结论是______.(写出正确结论的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com