【题目】在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是( )
A. ∠A=55°,∠D=35°
B. AC=9,BC=12,DF=6,EF=8
C. AC=3,BC=4,DF=6,DE=8
D. AB=10,AC=8,DE=15,EF=9
科目:初中数学 来源: 题型:
【题目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.则下列结论: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论__________(填编号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
求证:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强校园周边治安综合治理,警察巡逻车在学校旁边的一条东西方向的公路上执行治安巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程(单位:千米)为:
(1)此时,这辆巡逻车司机如何向警务处描述他现在的位置?
(2)已知每千米耗油升,如果警务处命令其巡逻车马上返回出发点,这次巡逻共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A、B、C的坐标分别为,,,点P,Q是边上的两个动点点P不与点C重合,以P,O,Q为顶点的三角形与全等,则满足条件的点P的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为( )
A. B. 2 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.
(1)求证:∠A=2∠DCB;
(2)求图中阴影部分的面积(结果保留π和根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,回答提出的问题.
我们知道:一个数的绝对值可以表示成,它是一个非负数,在数轴上,表示这个数在数轴上所对应的点到原点的距离(距离,当然不可能是负数),这正是绝对值的几何意义,比如说表示2这个数在数轴上所对应的点到原点的距离,它是2,所以说表示这个数在数轴上所对应的点到原点的距离,它也是2,所以说,严格来说,在数轴上,一个数在数轴上所对应的点到原点(原点对应的数为0)的距离应该表示为,但平时我们都写成,原因你明白.
(1)若给定,要找这样的x,请按照上面材料中的说法,解释它的几何意义并找出对应的;
(2)实际上,对于数轴上任意两个数之间的距离我们也可以表示为,反过来,这个绝对值的几何意义就是:数轴上表示与这两个数的点之间的距离,你能结合上面的叙述,解释的几何意义吗?请按你的理解说明:呢,如果能解释这个,你了不起;
(3)若,请直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com