精英家教网 > 初中数学 > 题目详情
(2013•松江区二模)如图,已知在Rt△ABC中,∠BAC=90°,AB=4,点D在边AC上,△ABD沿BD翻折,点A与BC边上的点E重合,过点B作BG∥AC交AE的延长线于点G,交DE的延长线于点F.
(1)当∠ABC=60°时,求CD的长;
(2)如果AC=x,AD=y,求y关于x的函数解析式,并写出函数定义域;
(3)联结CG,如果∠ACB=∠CGB,求AC的长.
分析:(1)通过解Rt△ABC求得AC=4
3
;然后由折叠的性质得到∠ABD=30°,则AD=ABtan30°=
4
3
3
,故CD=AC-AD=
8
3
3

(2)易证△CED∽△CAB,则该相似三角形的对应边成比例:
ED
AB
=
CE
CA
;根据折叠的性质得到:ED=AD=y,EC=BC-AB=BC-4,又由勾股定理知BC=
AB2+AC2
=
16+x2
,所以,把相关线段的长度代入比例式可以求得y=
4
16+x2
-16
x
(x>0);
(3)过点C作CH⊥BG,垂足为H.通过△ABD∽△BGA的对应边成比例得到
AB
BG
=
AD
BA
,即
4
2x
=
4
16+x2
-16
x
4
,解得x=2
5
(负值已舍),即AC=2
5
解答:解:(1)在Rt△ABC中,∠BAC=90°,∠ABC=60°,
∵AB=4,
∴AC=ABtan60°=4
3

由翻折得∠ABD=30°,得AD=ABtan30°=
4
3
3

∴CD=AC-AD=
8
3
3


(2)由翻折得∠BED=∠BAD=90°,
∴∠CED=90°,
∴∠CED=∠CAB,
又∵∠DCE=∠DCE,
∴△CED∽△CAB,
ED
AB
=
CE
CA

∵根据折叠的性质得到:ED=AD=y,EC=BC-AB=BC-4,
又由勾股定理知BC=
AB2+AC2
=
16+x2

y
4
=
16+x2
-4
x

∴y=
4
16+x2
-16
x
(x>0);

(3)过点C作CH⊥BG,垂足为H.
∵BG∥AC,
∴∠1=∠2,
∵∠1=∠CGB,
∴∠2=∠CGB,
∴CB=CG.
∴BH=HG=AC=x,∴BG=2x.
∵AE⊥BD,
∴∠5+∠6=∠6+∠7=90°,
∴∠5=∠7.
又∵∠BAC=∠ABG=90°,
∴△ABD∽△BGA,
AB
BG
=
AD
BA
,即
4
2x
=
4
16+x2
-16
x
4

解得x=2
5
(负值已舍),即AC=2
5
点评:本题综合考查了相似三角形的判定与性质,翻转折叠以及待定系数法求一次函数解析式.折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•松江区二模)下列各运算中,正确的运算是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)用换元法解方程
x-3
x
-
2x
x-3
=1
时,可以设y=
x-3
x
,那么原方程可以化为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)下列命题正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、DC的中点,
AD
=
a
EF
=
b
,那么
BC
=
2
b
-
a
2
b
-
a
.(用
a
b
表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)三角形的三条高或其延长线相交于一点,这点称为三角形的垂心.边长为2的等边三角形的垂心到这个三角形各顶点之间的距离之和为
2
3
2
3

查看答案和解析>>

同步练习册答案