【题目】在图所示的平面直角坐标系中表示下面各点:
A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。
(1)A点到原点O的距离是__ __个单位长。
(2)将点C向左平移6个单位,它会与点 重合。
(3)连接CE,则直线CE与y轴是什么位置关系?
(4)点F到x、y轴的距离分别是多少?
科目:初中数学 来源: 题型:
【题目】根据题意结合图形填空:
已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.
答:是,理由如下:
∵AD⊥BC,EG⊥BC(___________)
∴∠4=∠5=90°(___________________________)
∴AD∥EG(________________________________)
∴∠1=∠E____________________________)
∠2=∠3(__________________________________)
∵∠E=∠3(________________)
∴________________( 等量代换 )
∴AD是∠BAC的平分线(_____________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知:为等边三角形,点E为射线AC上一点,点D为射线CB上一点,.
(1)如图1,当E在AC的延长线上且时,AD是的中线吗?请说明理由;
(2)如图2,当E在AC的延长线上时,等于AE吗?请说明理由;
(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年日本奥运会的比赛门票开始接受公众预订.下表为日本奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
比赛项目 | 票价(元/场) |
男篮 | 1000 |
足球 | 800 |
乒乓球 | 500 |
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.
(1)如图1,当a=4时,求b的值;
(2)当a=4时,如图2,求出b的值;
(3)如图3,请写出∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是______________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是( )
A. △ODE绕点O顺时针旋转60°得到△OBC B. △ODE绕点O逆时针旋转120°得到△OAB
C. △ODE绕点F顺时针旋转60°得到△OAB D. △ODE绕点C逆时针旋转90°得△OAB
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com