精英家教网 > 初中数学 > 题目详情

【题目】如图,在反比例函数的图象上有一动点,连接并延长交图象的另一支于点,在第二象限内有一点,满足,当点运动时,点始终在函数的图象上运动,若,则的值为(

A.B.C.D.

【答案】A

【解析】

根据题意连接OC,作CMx轴于MANx轴于N,如图,利用反比例函数的性质得OA=OB,根据等腰三角形的性质得OCAB,利用正切的定义得到,再证明RtOCMRtOAN,利用相似的性质得,然后根据k的几何意义即可求k的值.

解:连接OC,作CMx轴于MANx轴于N,如图,

AB两点为反比例函数与正比例函数的两交点,

∴点A、点B关于原点对称,

OA=OB

CA=CB

OCAB

RtAOC中,tanCAO=

∵∠COM+AON=90°,∠AON+OAN=90°,

∴∠COM=OAN

RtOCMRtOAN

SCMO=6

|k|=6,而k0

k=-12

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学以致用:问题1:怎样用长为的铁丝围成一个面积最大的矩形?

小学时我们就知道结论:围成正方形时面积最大,即围成边长为的正方形时面积最大为.请用你所学的二次函数的知识解释原因.

思考验证:问题2:怎样用铁丝围一个面积为且周长最小的矩形?

小明猜测:围成正方形时周长最小.

为了说明其中的道理,小明翻阅书籍,找到下面的结论:

均为正实数)中,若为定值,则,只有当时,有最小值

思考验证:证明:均为正实数)

请完成小明的证明过程:

证明:对于任意正实数

  

解决问题:

1)若,则  (当且仅当  时取

2)运用上述结论证明小明对问题2的猜测;

3)填空:当时,的最小值为  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F.

(1)证明与推断:

①求证:四边形CEGF是正方形;

②推断:的值为   

(2)探究与证明:

将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AGBE之间的数量关系,并说明理由:

(3)拓展与运用:

正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CGAD于点H.若AG=6,GH=2,则BC=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,的半径为,点与圆心不重合,给出如下定义:若在上存在一点,使,则称点的特征点.

1)当的半径为1时,如图1

①在点中,的特征点是__________

②点在直线上,若点的特征点,求的取值范围.

2)如图2的圆心在轴上,半径为2,点.若线段上的所有点都是的特征点,直接写出圆心的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:对于任意正实数ab,∵≥0, ∴≥0

,只有当ab时,等号成立.

结论:在ab均为正实数)中,若ab为定值p,则a+b≥,只有当ab时,a+b有最小值

根据上述内容,回答下列问题:

m0,只有当m 时,有最小值

思考验证:如图1AB为半圆O的直径,C为半圆上任意一点(与点AB不重合),过点CCDAB,垂足为DADaDBb

试根据图形验证,并指出等号成立时的条件.

探索应用:如图2,已知A(30)B(0,-4)P为双曲线x0)上的任意一点,过点PPCx轴于点CPDy轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为文笔双塔,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG6米,GC53米.

请你根据以上数据,计算舍利塔的高度AB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yx2+(m2x2mm0)与x轴交于AB两点(AB左边),与y轴交于点C.连接ACBCD为抛物线上一动点(DBC两点之间),ODBCE点.

1)若△ABC的面积为8,求m的值;

2)在(1)的条件下,求的最大值;

3)如图2,直线ykx+b与抛物线交于MN两点(M不与A重合,MN左边),连MA,作NHx轴于H,过点HHPMAy轴于点PPHMN于点Q,求点Q的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.

1)求甲、乙两种型号设备每台的价格;

2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;

3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.

(1)求A种,B种树木每棵各多少元?

(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.

查看答案和解析>>

同步练习册答案