18£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬A¡¢BΪxÖáÉÏÁ½µã£¬C¡¢DΪyÖáÉϵÄÁ½µã£¬¾­¹ýµãA¡¢C¡¢BµÄÅ×ÎïÏßC1µÄÒ»²¿·ÖÓë¾­¹ýµãA¡¢D¡¢BµÄÅ×ÎïÏßC2µÄÒ»²¿·Ö×éºÏ³ÉÒ»Ìõ·â±ÕÇúÏߣ¬ÎÒÃǰÑÕâÌõ·â±ÕÇúÏß½Ð×ö¡°µ°Ïß¡±£®ÒÑÖªµãCµÄ×ø±êΪ£¨0£¬-$\frac{3}{2}$£©£¬µãMÊÇÅ×ÎïÏßC2£ºy=-x2+2x+3µÄ¶¥µã£®
£¨1£©ÇóA¡¢B¡¢MÈýµãµÄ×ø±ê£»
£¨2£©ÇóÅ×ÎïÏßC1µÄ½âÎöʽ£»
£¨3£©¡°µ°Ïß¡±ÔÚµÚËÄÏóÏÞÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃ¡÷PBCµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³ö¡÷PBCÃæ»ýµÄ×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔÚ½âÎöʽy=-x2+2x+3ÖÐÁîy=0£¬¿ÉÇóµÃA¡¢B×ø±ê£¬ÔÙ»¯Îª¶¥µãʽ¿ÉÇóµÃMµã×ø±ê£»
£¨2£©ÀûÓÃA¡¢B¡¢CÈýµãµÄ×ø±ê£¬ÓÉ´ý¶¨ÏµÊý·¨¿ÉÇóµÃC1µÄ½âÎöʽ£»
£¨3£©´æÔÚ£¬ÉèµãPµÄ×ø±êΪ£¨n£¬$\frac{1}{2}$n2-n-$\frac{3}{2}$£©£¬Ôò¿É±íʾ³ö¡÷PBCµÄÃæ»ý£¬ÔÙÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ¿ÉÇóµÃÆä×î´óÖµ£®

½â´ð Ìâ
£¨1£©ÔÚy=-x2+2x+3ÖÐÁîy=0£¬¿ÉµÃ-x2+2x+3=0£¬½âµÃx1=-1£¬x2=3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡ßy=-x2+2x+3=-£¨x-1£©2+4£¬
¡àM£¨1£¬4£©£»
£¨2£©ÉèC1½âÎöʽΪy=ax2+bx+c£¬
½«A¡¢B¡¢CÈýµãµÄ×ø±ê´úÈëµÃ$\left\{\begin{array}{l}{a-b+c=0}\\{9a+3b+c=0}\\{c=-\frac{3}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-1}\\{c=-\frac{3}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏßC1½âÎöʽΪy=$\frac{1}{2}$x2-x-$\frac{3}{2}$£»
£¨3£©´æÔÚ£®
ÉèµãPµÄ×ø±êΪ£¨n£¬$\frac{1}{2}$n2-n-$\frac{3}{2}$£©£¨0£¼n£¼3£©£¬
ÔòS¡÷PBC=S¡÷POC+S¡÷BOP-S¡÷BOC=$\frac{1}{2}$¡Á$\frac{3}{2}$¡Án+$\frac{1}{2}$¡Á3¡Á£¨-$\frac{1}{2}$n2+n+$\frac{3}{2}$£©-$\frac{1}{2}$¡Á3¡Á$\frac{3}{2}$=-$\frac{3}{4}$£¨n-$\frac{3}{2}$£©2+$\frac{27}{16}$£¬
¡ß-$\frac{3}{4}$£¼0£¬
¡àµ±n=$\frac{3}{2}$ʱ£¬S¡÷PBCÓÐ×î´óÖµ£¬×î´óÖµÊÇ$\frac{27}{16}$£®

µãÆÀ ±¾ÌâΪ¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°´ý¶¨ÏµÊý·¨¡¢¶þ´Îº¯ÊýµÄ×îÖµ¡¢Èý½ÇÐεÄÃæ»ý¼°Ð¶¨ÒåµÈ֪ʶ£®ÔÚ£¨1£©ÖÐ×¢Ò⺯ÊýͼÏóÓë×ø±êÖáµÄ½»µãµÄÇ󷨼°¶¥µãʽ£¬ÔÚ£¨2£©ÖÐ×¢Òâ´ý¶¨ÏµÊý·¨µÄÓ¦Óò½Ö裬ÔÚ£¨3£©ÖÐÓÃPµã×ø±ê±íʾ³ö¡÷PBCµÄÃæ»ý£¬´Ó¶øµÃµ½¶þ´Îº¯Êý½âÎöʽÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã²»ÊÇÌ«¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬µ«ÄѶȲ»´ó£¬Ïà¶ÔÈÝÒ׵÷֣®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½â·½³Ì£º
£¨1£©x-4=2-5x
£¨2£©5£¨x+8£©=6£¨2x-7£©+5
£¨3£©$\frac{x-7}{4}$-$\frac{2x-12}{3}$=1
£¨4£©$\frac{0.5-0.2x}{0.2}$=0.1+$\frac{x}{0.5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬¡ÏE=¡ÏF=90¡ã£¬¡ÏB=¡ÏC£¬AE=AF£¬¸ø³öÏÂÁнáÂÛ£º¢Ù¡Ï1=¡Ï2£»¢ÚBE=CF£»¢Û¡÷ACN¡Õ¡÷ABM£»¢ÜCN=MBÆäÖÐÕýÈ·µÄ½áÂÛÊǢ٢ڢۢܣ¨½«ÄãÈÏΪÕýÈ·µÄ½áÂÛÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨1£©ÊýÖáÉϱíʾ4ºÍ1µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ3£»±íʾ-3ºÍ2Á½µãÖ®¼äµÄ¾àÀëÊÇ5£»
£¨2£©Ò»°ãµØ£¬ÊýÖáÉϱíʾÊýmºÍÊýnµÄÁ½µãÖ®¼äµÄ¾àÀëµÈÓÚ|m-n|£®Èç¹û±íʾÊýaºÍ-2µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ4£¬ÄÇôa=2»ò-6£»
£¨3£©Èô´ËʱÊýÖáÉÏÓÐÁ½µãA£¬B¶ÔÓ¦µÄÊý·Ö±ðΪ-30ºÍ20£¬Èç¹ûµãPÑØÏß¶ÎAB×ÔµãAÏòBÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔ˶¯£¬Í¬Ê±µãQÑØÏß¶ÎBA×ÔµãBÏòAÒÔÿÃë3¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔ˶¯£¬¶à³¤Ê±¼äÖ®ºóP£¬QÁ½µãÏàÓö£¿´ËʱµãPÔÚÊýÖáÉ϶ÔÓ¦µÄÊýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ¿ÉÒÔ×ÔÓÉת¶¯µÄתÅ̱»3µÈ·Ö£¬Ö¸ÕëÂäÔÚÿ¸öÉÈÐÎÄڵĻú»á¾ùµÈ£®

£¨1£©ÏÖËæ»úת¶¯×ªÅÌÒ»´Î£¬Í£Ö¹ºó£¬Ö¸ÕëÖ¸ÏòÊý×Ö1µÄ¸ÅÂÊΪ$\frac{1}{3}$£»
£¨2£©Ð¡Ã÷ºÍС»ªÀûÓÃÕâ¸öתÅÌ×öÓÎÏ·£¬Èô²ÉÓÃÏÂÁÐÓÎÏ·¹æÔò£¬ÄãÈÏΪ¶ÔË«·½¹«Æ½Âð£¿ÇëÓÃÁбí»ò»­Ê÷״ͼµÄ·½·¨ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬¡÷ABCÖУ¬AB=AC£¬ABµÄ´¹Ö±Æ½·ÖÏß½»ABÓÚD£¬½»ACÓÚE£¬ECµÄ´¹Ö±Æ½·ÖÏßÇ¡ºÃ¾­¹ýµãB£®Çó¡ÏAµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¼ÆË㣺$\frac{2}{5}$-|-1$\frac{1}{2}$|-£¨+2$\frac{1}{4}$£©-£¨-2.75£©=-0.6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©¼ÆË㣺$\sqrt{8}$+£¨$\frac{1}{2}$£©-1-£¨¦Ð+2£©0+|1-$\sqrt{2}$|£®
£¨2£©½â·½³Ì 4x2-9=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼ÆËã
£¨1£©$\frac{m}{{{m^2}-{n^2}}}$-$\frac{n}{{{m^2}-{n^2}}}$£®             
£¨2£©£¨$\frac{1}{2}$£©-1+£¨-1£©+£¨2-$\sqrt{3}$£©0+|-3|£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸