【题目】如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).
(1)求抛物线的解析式及其对称轴方程;
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
【答案】(1),对称轴:;
(2)相似,理由见试题解析;
(3)4;
(4)Q1(3,0),Q2(3,)),Q3(3,).
【解析】
试题(1)把点B的坐标代入抛物线解析式求出b的值,即可得到抛物线解析式,再根据对称轴方程列式计算即可得解;
(2)令y=0,解方程求出点A的坐标,令x=0求出y的值得到点C的坐标,再求出OA、OB、OC,然后根据对应边成比例,夹角相等的两个三角形相似证明;
(3)设直线BC的解析式为,利用待定系数法求出解析式,再表示出MN,然后根据二次函数的最值问题解答;
(4)利用勾股定理列式求出AC,过点C作CD⊥对称轴于D,然后分①AC=CQ时,利用勾股定理列式求出DQ,分点Q在点D的上方和下方两种情况求出点Q到x轴的距离,再写出点的坐标即可;②点Q为对称轴与x轴的交点时,AQ=CQ,再写出点Q的坐标即可.
试题解析:(1)∵点B(8,0)在抛物线上,∴,解得,∴抛物线的解析式为,对称轴为直线;
(2)△AOC∽△COB.理由如下:令y=0,则,即,解得,,∴点A的坐标为(﹣2,0),令x=0,则y=4,∴点C的坐标为(0,4),∴OA=2,OB=8,OC=4,∵=2,∠AOC=∠COB=90°,∴△AOC∽△COB;
(3)设直线BC的解析式为,则:,解得:,∴直线BC的解析式为,∵MN∥y轴,∴MN===,∴当x=4时,MN的值最大,最大值为4;
(4)由勾股定理得,AC=,过点C作CD⊥对称轴于D,则CD=3,①AC=CQ时,DQ===,
点Q在点D的上方时,点Q到x轴的距离为,此时点Q1(3,),
点Q在点D的下方时,点Q到x轴的距离为,此时点Q2(3,),
②点Q为对称轴与x轴的交点时,AQ=5,CQ==5,∴AQ=CQ,此时,点Q3(3,0),
综上所述,点Q的坐标为(3,)或(3,)或(3,0)时,△ACQ为等腰三角形时.
科目:初中数学 来源: 题型:
【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.
组别 | A | B | C | D | E |
时间t(分钟) | t<40 | 40≤t<60 | 60≤t<80 | 80≤t<100 | t≥100 |
人数 | 12 | 30 | a | 24 | 12 |
(1)求出本次被调查的学生数;
(2)请求出统计表中a的值;
(3)求各组人数的众数;
(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+b的顶点在x轴上,P(x1,m),Q(x2,m)(x1<x2)是此抛物线上的两点.
(1)若a=1.
①当m=b时,求x1,x2的值;
②将抛物线沿y轴平移,使得它与x轴的两个交点间的距离为4,试描述出这一变化过程;
(2)若存在实数c,使得x1≤c﹣1,且x2≥c+7成立,则m的取值范围是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个全等的含30°角的直角三角板重叠在一起,如图,将△A′B′C′绕AC的中点M转动,斜边A′B′刚好过△ABC的直角顶点C,且与△ABC的斜边AB交于点N,连接AA′、C′C、AC′.若AC的长为2,有以下五个结论:①AA′=1;②C′C⊥A′B′;③点N是边AB的中点;④四边形AA′CC′为矩形;⑤A′N=B′C=,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,抛物线对称轴为x=﹣,下列结论中,错误的结论是( )
A. abc>0
B. 方程ax2+bx+c=0的解是x1=﹣2,x2=1
C. b2﹣4ac>0
D. a=b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC,BD相交于点O.
(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC各顶点的坐标分别为A(2,2),B(4,1),C(4,4).(正方形网格中每个小正方形的边长是 1个单位长度).
(1)画出将△ABC绕点O 顺时针旋转90度得到的△A1B1C1;
(2)写出A1、B1、C1的坐标;
(3)求出线段AC在旋转过程中所扫过的面积(结果保留).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com