【题目】如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD,CE交于点O,F为BC的中点,连接EF,DF,DE,则下列结论:①EF=DF;②ADAC=AEAB;③△DOE∽△COB;④若∠ABC=45°时,BE= FC. 其中正确的是(把所有正确结论的序号都选上)
【答案】①②③④
【解析】解:∵BD⊥AC于点D,CE⊥AB于点E,F为BC的中点, ∴EF= BC,DF= BC,
∴EF=DF,故①正确;
∵∠BEC=∠BDC=90°,
∴B、C、D、E四点共圆,
由割线定理可知ADAC=AEAB,故②正确;
∵B、C、D、E四点共圆,
∴∠OED=∠OBC,∠ODE=∠OCB,
∴△DOE∽△COB,故③正确;
若∠ABC=45°,则△BEC为等腰直角三角形,
∴BC= BE,
∵F为BC中点,
∴FC= BC= BE,
∴BE= FC,故④正确;
所以答案是:①②③④.
【考点精析】通过灵活运用直角三角形斜边上的中线和相似三角形的判定与性质,掌握直角三角形斜边上的中线等于斜边的一半;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2﹣3与y2= (x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论: ①无论x取何值,y2的值总是正数;
②a=1;
③当x=0时,y2﹣y1=4;
④2AB=3AC;
其中正确结论是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.
(1)求证:PA是⊙O的切线;
(2)若AF=3,BC=8,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).
(1)求m的值;
(2)过动点P(n,0)且垂直于x轴的直线与L1 , L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点A为平面内一点,给出如下定义:过点A作AB⊥y轴于点B,作正方形ABCD(点A,B,C,D顺时针排列),即称正方形ABCD为以A为圆心,OA为半径的⊙A的“友好正方形”.
(1)如图1,若点A的坐标为(1,1),则⊙A的半径为 .
(2)如图2,点A在双曲线y= (x>0)上,它的横坐标是2,正方形ABCD是⊙A的“友好正方形”,试判断点C与⊙A的位置关系,并说明理由.
(3)如图3,若点A是直线y=﹣x+2上一动点,正方形ABCD为⊙A的“友好正方形”,且正方形ABCD在⊙A的内部时,请直接写出点A的横坐标m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)顾客一次性购买多少件时,该网店从中获利最多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示则①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中判断正确的有( )个.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,平移抛物线y=x2﹣2x+3,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A,O,B为顶点的三角形是等腰直角三角形,求平移后的抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com