精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点A为平面内一点,给出如下定义:过点A作AB⊥y轴于点B,作正方形ABCD(点A,B,C,D顺时针排列),即称正方形ABCD为以A为圆心,OA为半径的⊙A的“友好正方形”.
(1)如图1,若点A的坐标为(1,1),则⊙A的半径为
(2)如图2,点A在双曲线y= (x>0)上,它的横坐标是2,正方形ABCD是⊙A的“友好正方形”,试判断点C与⊙A的位置关系,并说明理由.
(3)如图3,若点A是直线y=﹣x+2上一动点,正方形ABCD为⊙A的“友好正方形”,且正方形ABCD在⊙A的内部时,请直接写出点A的横坐标m的取值范围.

【答案】
(1)
(2)解:如图2中,

∵A(2, ),∴O A=

∵AC=2 = =

∴O A<A C,

∴点C在⊙A外.

(或如图,利用勾股定理直观分析:∵OB<BC,AB=AB,∴O A<A C也可以)


(3)解:如图3中,

∵点A是直线y=﹣x+2上一动点,直线与坐标轴是夹角为45°,

又∵四边形ABCD是正方形,

∴点C(0,2),

∴当AC<OA时,正方形ABCD在⊙A内部,

∵AC=OA时,点A(1,1),

∴m<1时,AC<OA,

∵m=0时,正方形不存在,

∴m<1且m≠0时,正方形ABCD在⊙A内部


【解析】解:(1)如图1中,连接OA.
∵A(1,1),AB⊥y轴,
∴AB=OB=1,∠ABO=90°,
∴OA= = =
∴⊙A的半径为
所以答案是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是(
A.88°
B.92°
C.106°
D.136°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P,Q是反比例函数y= 图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 , △QMN的面积记为S2 , 则S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=ABAD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料: “怀山俊秀,柔水有情”﹣怀柔,一直受到世人的青睐.早在上世纪90年代,联合国第4届世界妇女大会NGO论坛的举办使怀柔蜚声海内外,此后,随着世界养生大会、国际青少年嘉年华、全国汽车拉力赛等一系列活动赛事的成功举办,为这座国际交往新城聚集了庞大的人气.2014年11月11日,全世界的眼光再次聚焦在北京怀柔雁栖湖,这里成功举办了第22次APEC领导人峰会.现如今怀柔已成为以自然风光游为基础,休闲度假游、乡村美食游、满族风情游为特色,影视文化游、健身养生游、竞技赛事游为时尚的多元化旅游胜地.
随着怀柔旅游业的迅速发展,也带动了怀柔的经济收入.据统计,2011年全年接待游客1047万人次,比上一年增长5.3%;2012年全年接待游客1085万人次,比上一年增长3.7%; 2013年全年接待游客1107.6万人次,比上一年增长2%; 2014年全年接待游客1135万人次,比上一年增长2.4%;2015年全年接待游客1297.4万人次,比上一年增长14.3%.(以上数据来源于怀柔信息网)根据以上材料解答下列问题:
(1)用折线图将2011﹣2015年怀柔区全年接待游客量表示出来,并在图中标明相应数据;
(2)根据绘制的折线图中提供的信息,预估 2016年怀柔区全年接待游览客量约万人次,你的预估理由是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD,CE交于点O,F为BC的中点,连接EF,DF,DE,则下列结论:①EF=DF;②ADAC=AEAB;③△DOE∽△COB;④若∠ABC=45°时,BE= FC. 其中正确的是(把所有正确结论的序号都选上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E,F分别是AC,BC边上一点.
(1)求证:
(2)若CE= AC,BF= BC,求∠EDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(4,0)、(4,n),若经过点O、A的抛物线y=﹣x2+bx+c的顶点C落在边OB上,则图中阴影部分图形的面积和为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式;
(2)直接写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标.

查看答案和解析>>

同步练习册答案