【题目】已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(2,0),B(0,﹣2),P为y轴上B点下方一点,以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限,过M作MN⊥y轴于N.
(1)求直线AB的解析式;
(2)求证:△PAO≌△MPN;
(3)若PB=m(m>0),用含m的代数式表示点M的坐标;
(4)求直线MB的解析式.
【答案】(1)y=x﹣2.(2)详见解析;(3)(2+m,﹣4﹣m);(4)y=﹣x﹣2.
【解析】
(1)直线AB的解析式为y=kx+b(k≠0),利用待定系数法求函数的解析式即可;
(2)先证∠APO=∠PMN,用AAS证△PAO≌△MPN;
(3)由(2)中全等三角形的性质得到OP=NM,OA=NP.根据PB=m,用m表示出NM和ON=OP+NP,根据点M在第四象限,表示出点M的坐标即可.
(4)设直线MB的解析式为y=nx﹣2,根据点M(m+2,﹣m﹣4).然后求得直线MB的解析式.
(1)解:设直线AB:y=kx+b(k≠0)
代入A(2,0 ),B (0,﹣2 ),得
,
解得,
∴直线AB的解析式为:y=x﹣2.
(2)证明:作MN⊥y轴于点N.
∵△APM为等腰直角三角形,PM=PA,
∴∠APM=90°.
∴∠OPA+∠NPM=90°.
∵∠NMP+∠NPM=90°,
∴∠OPA=∠NMP.
在△PAO与△MPN中
,
∴△PAO≌△MPN(AAS).
(3)由(2)知,△PAO≌△MPN,则OP=NM,OA=NP.
∵PB=m(m>0),
∴ON=2+m+2=4+m MN=OP=2+m.
∵点M在第四象限,
∴点M的坐标为(2+m,﹣4﹣m).
(4)设直线MB的解析式为y=nx﹣2(n≠0).
∵点M(2+m,﹣4﹣m).
在直线MB上,
∴﹣4﹣m=n(2+m)﹣2.
整理,得(m+2)n=﹣m﹣2.
∵m>0,
∴m+2≠0.
解得 n=﹣1.
∴直线MB的解析式为y=﹣x﹣2.
科目:初中数学 来源: 题型:
【题目】“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.
(1)如图2,用“格子乘法”表示,则的值为__________.
(2)如图3,用“格子乘法”表示两个两位数相乘,则的值为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.
(1)求每个篮球和每个足球的售价;
(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们都知道无限不循环小数是无理数,而无限循环小数是可以化成分数的,例如(为循环节)是可以化成分数的,方法如下:
令①
则②
②-①得:,即,解得
请你阅读上面材料完成下列问题:
(1)化成分数是 .
(2)化成分数是 .
(3)请你将化成分数(写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的说理过程:如图,在四边形中,,分别是,延长线上的点,连接,分别交,于点,.已知,.对和说明理由.
理由:(已知),
(______),
(等量代换).
(______).
(______).
(______),
(______).
(______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法综宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法,书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,则小和尚有__________人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com