精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.

(1)求证:△ABE∽△DEF.

(2)若正方形的边长为4,求BG的长.

【答案】(1)见解析;(2)BG=BC+CG=10.

【解析】

1)利用正方形的性质,可得∠A=D,根据已知可得AEAB=DFDE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF

2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.

1)证明:∵ABCD为正方形,

AD=AB=DC=BC,∠A=D=90 °.

AE=ED

AEAB=12.

DF=DC

DFDE=12

AEAB=DFDE

∴△ABE∽△DEF

2)解:∵ABCD为正方形,

EDBG

∴△EDF∽△GCF

EDCG=DFCF.

又∵DF=DC,正方形的边长为4

ED=2CG=6

BG=BC+CG=10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校开展青少年科技创新比赛活动,“喜洋洋代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C,AC,甲的速度是乙的速度的1.5,t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:),d1,d2t的函数关系如图,试根据图象解决下列问题.

(1)填空乙的速度v2=________/;

(2)写出d1t的函数表达式;

(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55~0.75元/度之间,经测算,若电价调至x元/度,则本年度新增用电量y(亿度)与(x-0.4)成反比例.又知当x=0.65时,y=0.8.

(1)求y与x之间的函数解析式;

(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线y=﹣x+aa>0)分别与x 轴、y 轴交于AB 两点,CD 的坐标分别为 C(0b)、D(2aba)(ba

(1)试判断四边形ABCD的形状,并说明理由;

(2)若点CD关于直线AB的对称点分别为C′、D

①当b=3时,试问:是否存在满足条件的a,使得BCD面积为

②当点C恰好落在x轴上时,试求a b的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)己知,如图1,ABC是O的内接正三角形,点P为弧BC上一动点,请探究PA,PB,PC三者之间有何数量关系,并给予证明.

(2)如图2,四边形ABCD是O的内接正方形,点P为弧BC上一动点,请探究PA,PB,PC三者之间有何数量关系,并给予证明.

(3)如图3,六边形ABCDEF是O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为6EF分别是ABBC边上的点,且∠EDF=45°,将DAE绕点D逆时针旋转90°,得到DCM

(1)求证:EF=MF

(2)AE=2,求FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.

(1)求此反比例函数和一次函数的解析式;

(2)求AOB的面积;

(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙P的圆心P(m,n)在抛物线y=上.

(1)写出mn之间的关系式;

(2)当⊙P与两坐标轴都相切时,求出⊙P的半径;

(3)若⊙P的半径是8,且它在x轴上截得的弦MN,满足0≤MN≤2时,求出m、n的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的三边分别为6cm8cm10cm,则这个三角形内切圆的半径是________

查看答案和解析>>

同步练习册答案