精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(,y2)在该图象上,则y1>y2 . 其中正确的结论是 (填入正确结论的序号).

【答案】②④
【解析】解:
∵二次函数开口向下,且与y轴的交点在x轴上方,
∴a<0,c>0,
∵对称轴为x=1,
∴﹣=1,
∴b=﹣2a>0,
∴abc<0,
故①、③都不正确;
∵当x=﹣1时,y<0,
∴a﹣b+c<0,
故②正确;
由抛物线的对称性可知抛物线与x轴的另一交点在2和3之间,
∴当x=2时,y>0,
∴4a+2b+c>0,
故④正确;
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∵﹣2<﹣
∴y1<y2
故⑤不正确;
综上可知正确的为②④,
所以答案是:②④.
【考点精析】根据题目的已知条件,利用二次函数图象以及系数a、b、c的关系的相关知识可以得到问题的答案,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.
(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:﹣(﹣2)+(1+π)0﹣||+
(2)先化简,再求值:(x+2)(x﹣2)﹣x(x+3),其中x=﹣3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.

(1)求证:DC是⊙O的切线;
(2)若OE=cm,AC=cm,求DC的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣2|++2﹣1﹣cos60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数的图象交BC于D,连接AD,则四边形AOCD的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.

(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015广州)如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°

(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.

查看答案和解析>>

同步练习册答案