【题目】如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1 , 且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2 .
(1)求双曲线的解析式;
(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为;
(3)点(6,n)为G1与G2的交点坐标,求a的值.
(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN< ,直接写出a的取值范围.
【答案】
(1)
把D(3,m)、E(12,m﹣3)代入y= 得 ,解得 ,
所以双曲线的解析式为y= ;
(2)2
(3)
解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),
抛物线G2的解析式为y=﹣(x﹣a)2+9,
把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,
即a的值为6± ;
(4)
抛物线G2的解析式为y=﹣(x﹣a)2+9,
把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣ 或a=3+ ;
把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2 ;
∵G1与G2有两个交点,
∴3+ ≤a≤12﹣2 ,
设直线DE的解析式为y=px+q,
把D(3,4),E(12,1)代入得 ,解得 ,
∴直线DE的解析式为y=﹣ x+5,
∵G2的对称轴分别交线段DE和G1于M、N两点,
∴M(a,﹣ a+5),N(a, ),
∵MN< ,
∴﹣ a+5﹣ < ,
整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,
∴a<4或a>9,
∴a的取值范围为9<a≤12﹣2 .
【解析】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),
而D(3,4),
所以BE= =2 .
所以答案是2 ;
【考点精析】关于本题考查的确定一次函数的表达式和两点间的距离,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,AB,AC为⊙O的弦,AB=AC,连接AO.
(1)如图l,求证:∠OAC=∠OAB;
(2)如图2,过点B作AC的垂线交⊙O于点D,连接CD,设AO的延长线交BD于点E,求证:BE=CD;
(3)在(2)的条件下,如图3,点F,G分别在CD,BD的延长线上,连接AG,AF,若CF×AG=8,∠GAB=45°+ ∠GAE,∠B=50°,求△ACF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AD=8,AB=6,点E为射线DC上一个动点,把△ADE沿AE折叠,使点D落在点F处,若△CEF为直角三角形时,DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高新企业员工的工资由基础工资、绩效工资和工龄工资三部分组成,其中工龄工资的制定充分了考虑员工对企业发展的贡献,同时提高员工的积极性,控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案. Ⅰ.工龄工资分为社会工龄工资和企业工龄工资;
Ⅱ.社会工龄=参加本企业工作时年龄﹣18,企业工龄=现年年龄﹣参加本企业工作时年龄.
Ⅲ.当年工作时间计入当年工龄
Ⅳ.社会工龄工资y1(元/月)与社会工龄x(年)之间的函数关系式如①图所示,企业工龄工资y2(元/月)与企业工龄x(年)之间的函数关系如图②所示.
请解决以下问题
(1)求出y1、y2与工龄x之间的函数关系式;
(2)现年28岁的高级技工小张从18岁起一直实行同样工龄工资制度的外地某企业工作,为了方便照顾老人与小孩,今年小张回乡应聘到该企业,试计算第一年工龄工资每月下降多少元?
(3)已经在该企业工作超过3年的李工程师今年48岁,试求出他的工资最高每月多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈ ,sin31°≈ )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为( )
A.(3,1)
B.(3, )
C.(3, )
D.(3,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cm
B.15cm
C.10 cm
D.20 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是( )
A.16π
B.36π
C.52π
D.81π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com