精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,E,F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:

(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2

【答案】
(1)证明:∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,

∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,

在△AQE和△AFE中

∴△AQE≌△AFE(SAS),

∴∠AEQ=∠AEF,

∴EA是∠QED的平分线


(2)证明:由(1)得△AQE≌△AFE,

∴QE=EF,

在Rt△QBE中,

QB2+BE2=QE2

则EF2=BE2+DF2


【解析】(1)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;(2)利用(1)中所求,再结合勾股定理得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CF⊥ABF,BE⊥ACE,MBC的中点.

(1)若EF=3,BC=8,求△EFM的周长;

(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:
(1)2(x﹣3)=3x(x﹣3);
(2)x2﹣2x=2x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC是直角三角形,∠A=90°,D是斜边BC的中点,E、F分别是AB、AC边上的动点,且DEDF.

(1)如图1,AB=AC,BE=12,CF=5,求线段EF的长.

(2)如图2,若ABAC,写出线段EF与线段BE、CF之间的等量关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是(

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,对称轴是直线 .则下列结论中,正确的是(

A.a<0
B.c<﹣1
C.a﹣b+c<0
D.2a+3b=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为(
A. 个单位
B.1个单位
C. 个单位
D. 个单位

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.

(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ,CP,若AQ⊥CP,求t的值.

查看答案和解析>>

同步练习册答案