精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.

(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ,CP,若AQ⊥CP,求t的值.

【答案】
(1)解:根据勾股定理得:BA=

分两种情况讨论:

①当△BPQ∽△BAC时,

∵BP=5t,QC=4t,AB=10,BC=8,

,解得,t=1,

②当△BPQ∽△BCA时,

,解得,t=

∴t=1或 时,△BPQ∽△BCA


(2)解:过P作PM⊥BC于点M,AQ,CP交于点N,如图所示:

则PB=5t,PM=3t,MC=8﹣4t,

∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,

∴∠NAC=∠PCM,

∵∠ACQ=∠PMC,

∴△ACQ∽△CMP,

,解得t=


【解析】(1)分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E,F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:

(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把抛物线y= x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y= x2交于点Q,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC中,AB=AC,BC∥x轴,点A,C在反比例函数y= (x>0)的图象上,点B在反比例函数y= (x>0)的图象上,则△ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.

运用上述知识,解决下列问题:

(1)如果a-2+b+3=0,其中a、b为有理数,那么a= ,b=

(2)如果2+a-1-b=5,其中a、b为有理数,求a+2b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=x2﹣(m﹣2)x+m的图象过点(﹣1,15),设其图象与x轴交于点A,B(A在B的左侧),点C在图象上,且SABC=1,求:
(1)求m;
(2)求点A,点B的坐标;
(3)求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程
(1)3x2﹣6x+1=0(用配方法)
(2)3(x﹣1)2=x(x﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2015攀枝花,第15题,4分)如图,在边长为2的等边△ABC中,DBC的中点,EAC边上一点,则BE+DE的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.
请根据图中提供的信息,解答下列问题:
(1)圆柱形容器的高为cm,匀速注水的水流速度为cm3/s;
(2)若“几何体”的下方圆柱的底面积为15cm2 , 求“几何体”上方圆柱的高和底面积.

查看答案和解析>>

同步练习册答案