精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数yax2+bx+c的图象与x轴交于点A(﹣10)和Bm0),且3m4,则下列说法:①b0;②a+cb;③b24ac;④2b3c;⑤1,正确的是(  )

A.①②④B.①③⑤C.②③④D.②③⑤

【答案】D

【解析】

根据二次函数的图象与性质即可求出答案.

解:①由对称轴可知:0a0

b0,故①错误;

②将(﹣10)代入yax2+bx+c

ab+c0,故②正确;

③由题意可知:△=b24ac0,故③正确;

2b3c

2a+c)﹣3c

2a+2c3c

2ac

a0c0

2ac0

2b3c,故④错误;

⑤将(m0)代入yax2+bx+c

am2+bm+c0

am2+bmab

am2a=﹣bmb

a1m)=b

∴(bc)(1m)=b

mbcm1),

1,故⑤正确;

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形OABC的长是12m,宽是4m,按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+2x+c表示.

1)请写出该抛物线的函数关系式;

2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?

3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:方程cx2+bx+a0是一元二次方程ax2+bx+c0的倒方程.

1)已知x2x2+2x+c0的倒方程的解,求c的值;

2)若一元二次方程ax22x+c0无解,求证:它的倒方程也一定无解;

3)一元二次方程ax22x+c0a≠c)与它的倒方程只有一个公共解,它的倒方程只有一个解,求ac的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费万元,购买乙型智能设备花费万元,购买的两种设备数量相同,且两种智能设备的单价和为万元.

求甲、乙两种智能设备单价;

垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的,且生产每吨燃料棒所需人力成本比物资成本的倍还多.调查发现,若燃料棒售价为每吨元,平均每天可售出吨,而当销售价每降低元,平均每天可多售出.垃圾处理厂想使这种燃料棒的销售利润平均每天达到元,且保证售价在每吨元基础上降价幅度不超过,求每吨燃料棒售价应为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过两点,与y轴交于点C,连接AB,AC,BC.

求抛物线的表达式;

求证:AB平分

抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2x+cx轴交于AB两点,且点B的坐标为(30),与y轴交于点C,连接ACBC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点Px轴的垂线,交AC于点Q

1)求AC两点的坐标.

2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.

3)试探究在点P运动的过程中,是否存在这样的点Q,使得以BCQ为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.

1)求抛物线的解析式和顶点坐标.

2)当点位于轴下方时,求面积的最大值.

3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.关于的函数解析式,并写出自变量的取值范围;

②当时,点的坐标是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形.点A的坐标为(02),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A.

1)求反比例函数与一次函数的解析式;

2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数的图象上有且只有一个完美点,且当时,函数的最小值为﹣3,最大值为1,则m的取值范围是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案