【题目】如图,抛物线经过,两点,与y轴交于点C,连接AB,AC,BC.
求抛物线的表达式;
求证:AB平分;
抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.
【答案】抛物线的解析式为;证明见解析;点M的坐标为或.
【解析】
将,代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b的值;
先求得AC的长,然后取,则,连接BD,接下来,证明,然后依据SSS可证明≌,接下来,依据全等三角形的性质可得到;
作抛物线的对称轴交x轴与点E,交BC与点F,作点A作,作,分别交抛物线的对称轴与、M,依据点A和点B的坐标可得到,从而可得到或,从而可得到FM和的长,故此可得到点和点M的坐标.
将,代入得:,
解得:,,
抛物线的解析式为;
,,
,
取,则,
由两点间的距离公式可知,
,,
,
,
在和中,,,,
≌,
,
平分;
如图所示:抛物线的对称轴交x轴与点E,交BC与点F.
抛物线的对称轴为,则.
,,
,
,
,
,
,
同理:,
又,
,
,
点M的坐标为或.
科目:初中数学 来源: 题型:
【题目】作图题:(不写作法,但必须保留作图痕迹)
(1)如图,已知点M.N和∠AOB,求作一点P,使P到点M.N的距离相等,且到∠AOB的两边的距离相等.
(2)要在河边修建一个水泵站,分别向张村.李庄送水(如图). 修在河边l什么地方,可使所用水管最短?试在图中确定水泵站的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,,D为BC的中点,DEAB,垂足为E,过点B作BF//AC交DE的延长线于点F.
(1)求证:;
(2)连接AF,求证:AF=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同时抛掷A,B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x,y,并以此确定点P(x,y),那么点P落在直线y=-2x+9上的概率为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月按30天计算,这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天且x为整数的销售量为y件.
直接写出y与x的函数关系式;
设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.
已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.
(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
①求∠DAF的度数;
②求证:△ADE≌△ADF;
(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com