分析 (1)首先确定A、B、C关于x轴对称的点的位置A1、B1、C1,再连接即可;
(2)首先确定A1、B1、C1向右平移3个单位后对应点的位置,再连接即可;
(3)当P在x轴上,PA1+PC2的值最小,需要确定A1关于x轴的对称点位置,即为A点位置,连接AB2,与x轴的交点就是P的位置.
解答
解:(1)如图所示:
(2)如图所示:
(3)连接AB2,与x轴的交点就是P的位置,
设直线AC2的解析式为:y=kx+b,
则$\left\{\begin{array}{l}{-2k+b=3}\\{3k+b=-2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=1}\end{array}\right.$,
故直线AC2的解析式为:y=-x+1,
当y=0时,x=1,
故P点坐标为(1,0).
点评 此题主要考查了作图--轴对称变换和平移,以及最短路线,关键是掌握在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.
科目:初中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 抛物线与x轴有两个交点 | B. | 当x=1时,函数有最大值 | ||
| C. | 抛物线可由$y=-\frac{1}{2}{x^2}$经过平移得到 | D. | 当-1<x≤2时,函数y的整数值有3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com