精英家教网 > 初中数学 > 题目详情

【题目】已知等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕A点旋转时,两边分别交直线BC,CD于点M、N.

(1)如图①,当M、N分别在边BC,CD上时,作AE垂直于AN,交CB的延长线于点E,求证:ABE≌△ADN;

(2)如图②,当M、N分别在边CB,DC的延长线上时,求证:MN+BM=DN;

(3)如图③,当M、N分别在边CB,DC的延长线上时,作直线BD交直线AM、ANP、Q两点,若MN=10,CM=8,求AP的长.

【答案】(1)证明见解析;(2)证明见解析;(3).

【解析】试题分析:由同角的余角相等得到一对锐角相等,再由一对直角相等,又正方形的边长相等,利用ASA即可得到

上截取连接首先证明再证为等腰直角三角形,即可得到结论;

连接AC,在中,由MNCM的长,利用勾股定理求出CN的长,根据图3的结论等量代换即可求出BC的长,从而利用勾股定理求出AC的长,证明 且相似比为 中,利用勾股定理求出AN的长,代入比例式即可求出AP的长.

试题解析:如图1,

AE垂直于AN

∵四边形ABCD是正方形,

(ASA);

(2)证明:如图②上截取连接

为等腰直角三角形,

ANMG的垂直平分线,

,即

(3)如图③,连接AC,同(2),证得

中,

根据勾股定理得

中,

根据勾股定理得

解得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBCDBDADDGDC

1)求证:△BDG≌△ADC

2)分别取BGAC的中点EF,连接DEDF,则DEDF有何关系,并说明理由.

3)在(2)的条件下,连接EF,若AC10,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC PBD上一点,过点PPM⊥ADPN⊥CD,垂足分别为MN.

1)求证:∠ADB=∠CDB

(2)∠ADC=90°,求证:四边形MPND是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场去年大豆和小麦的总产量为200吨,今年大豆和小麦的总产量为225吨,其中大豆比去年増产5%,小麦比去年増产15%,求该农场今年大豆和小麦的产量各是多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG.

(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;

(2)若AB=8,AD=4,求四边形DHBG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC是等腰直角三角形,四边形ADEF是正方形,点DF分别在ABAC边上,此时BD=CFBDCF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2BD=CF成立吗?若成立,请证明;若不成立,请说明理由.

(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BDCF于点G.

①求证:BDCF ②当AB=4AD=时,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+6分别与x轴,y轴交于点BC且与直线yx交于点A,点D是直线OA上的点,当ACD为直角三角形时,则点D的坐标为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+4的图象分别与x轴,y轴的正半轴交于点EF,一次函数ykx4的图象与直线EF交于点Am2),且交于x轴于点P

1)求m的值及点EF的坐标;

2)求APE的面积;

3)若B点是x轴上的动点,问在直线EF上,是否存在点QQA不重合),使BEQAPE全等?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案