精英家教网 > 初中数学 > 题目详情

【题目】探究函数的图象与性质.

(1)下表是yx的几组对应值.

其中m的值为_______________;

(2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分;

(3)结合函数的图象,写出该函数的一条性质:_____________________________;

(4)若关于x的方程2个实数根,则t的取值范围是___________________.

【答案】(1)3;(2)见解析;(3)图象关于直线x=1轴对称.(答案不唯一);(4)t>1t=0.

【解析】

1)把x=3代入解析式计算即可得出m的值

2)画出图象即可

3)根据图象得出性质

4)观察图象即可得出结论

1)当x=3y==3,∴m=3;

2)如图所示:

3)图象关于直线x=1轴对称(答案不唯一)

4)观察图象可知t1t=0关于x的方程2个实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形纸片 ABCD 中,BD90°,点 EF 分别在边 BCCD 上,将 ABAD 分别沿 AEAF 折叠,点 BD 恰好都和点 G 重合,EAF45°

1求证:四边形 ABCD 是正方形;

2 ECFC1,求 AB 的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是ABC的外接圆,BC为O的直径,点E为ABC的内心,连接AE并延长交O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.

(1)求证:DB=DE;

(2)求证:直线CF为O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).

(1)求此抛物线的表达式;

(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D是等边ABC边AD上的一点,且AD:DB=1:2,现将ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )

A、 B、 C、 D、

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在一次测绘活动中,某同学站在点A处观测停放于BC两处的小船测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为______米(精确到0.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)

(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O 中,AB、CD是互相垂直的两条直径,点E上,CF⊥AE 于点F,若点F四等分弦AE,且AE=8,则⊙O 的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.

要直接求∠A的度数显然很因难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠PAD=60°使ADAP,连接PDCD,则△PAD是等边三角形.

   ADAP=3,∠ADP=∠PAD=60°

∵△ABC是等边三角形

ACAB,∠BAC=60°

∴∠BAP   

∴△ABP≌△ACD

BPCD=4,   =∠ADC

∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2PC2

∴∠PDC   °

∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°

(2)如图3,在△ABC中,ABBC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.

查看答案和解析>>

同步练习册答案