精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,∠BAC=90°,AB=AC,D、EBC边上的点,将△ABD绕点A旋转,得到△ACD′.

(1)当∠DAE=45°时,求证:DE=D′E;

(2)在(1)得条件下,猜想:BD2、DE2、CE2有怎样的数量关系?请写出,并说明理由.

【答案】(1)证明见解析;(2)BD2+CE2=DE2.理由见解析

【解析】

(1)根据旋转的性质可得AD=AD′,CAD′=BAD,然后求出∠D′AE=45°,从而得到∠DAE=D′AE,再利用边角边证明ADEAD′E全等,根据全等三角形对应边相等证明即可;

(2)由(1)知AED≌△AED′得到:ED=ED′,由等腰直角三角形的性质可得AB=AC,BAC=90°,B=ACB=45°,再根据已知可得BD=CD′,B=ACD′=45°,继而可得∠BCD′=90°,在RtCD′E中,根据勾股定理有CE2+D′C2=D′E2,继而利用等量代换即可得BD2+CE2=DE2

1)∵△ABD绕点A旋转,得到ACD′,

AD=AD′,DAD′=BAC=90°,

∵∠DAE=45°

∴∠EAD′=DAD′﹣DAE=90°﹣45°=45°,

∴∠EAD′=DAE,

AEDAED′

∴△AED≌△AED′,

DE=D′E;

(2)BD2+CE2=DE2.理由如下:

由(1)知AED≌△AED′得到:ED=ED′,

ABC中,AB=AC,BAC=90°,

∴∠B=ACB=45°,

∵△ABD绕点A旋转,得到ACD′

BD=CD′,B=ACD′=45°,

∴∠BCD′=ACB+ACD′=45°+45°=90°,

RtCD′E中,CE2+D′C2=D′E2

BD2+CE2=DE2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC AB=4,BC=6,∠B=60°,ABC沿着射线BC 的方向平移 2 个单位后得到ABC′,连接 ACABC 的周长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A( )和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.

(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABC在同一直线上,在这条直线同侧作等边△ABD和等边△BCE,连接AECD,交点为MAEBD于点PCDBE于点Q,连接PQBM4个结论:①△ABE≌△DBC②△DQB≌△ABP③∠EAC=30°④∠AMC=120°,请将所有正确结论的序号填在横线上______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3, ),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )

A. B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的坐标分别为,点轴上的一个动点,若点关于直线的对称点恰好落在坐标轴上,则点的坐标为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于任意三点矩面积,给出如下定义:“水平底为任意两点横坐标差的最大值,铅垂高为任意两点纵坐标差的最大值,则矩面积.

例如:三点坐标分别为,则水平底,“铅垂高,“矩面积.

(1)已知点.

①若三点的矩面积12,求点的坐标;

②求三点的矩面积的最小值.

(2)已知点,其中.三点的矩面积8,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.

查看答案和解析>>

同步练习册答案