【题目】画图并讨论.
已知ΔABC,如图所示,要求画一个三角形,使它与ΔABC有一个公共的顶点C,并且与ΔABC全等。
甲同学的画法如下:
①延长BC和AC;
②在BC的延长线上取点D,使CD=BC;
③在AC的延长线上取点E,使CE=AC;
④连接DE,得ΔEDC.
乙同学的画法如下:
①延长AC和BC;
②在BC的延长线上取点M,使CM=AC;
③在AC的延长线上取点N,使CN=BC;
④连接MN,得ΔMNC.
究竟哪种画法对?有如下几种结论:
A.甲画得对,乙画得不对; B. 乙画得对,甲画得不对;
C.甲、乙画得都对; D.甲、乙画得都不对.
正确的结论是 .
这道题还可以按下面步骤完成:
①用量角器量出∠ACB的度数;
②在∠ACB的外部画射线CP,使∠ACP=∠ACB;
③在射线CP上取点D,使CD=CB;
④连接AD.
ΔADC就是所要画的三角形.
这样画的结果可记作ΔABC≌ .
满足题目要求的三角形可以画出多少个呢?
答案是 .请你再设计一种画法并画出图形.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D在AB中点时,判断四边形BECD的形状,并说明理由;
(3)若D为AB中点,则当∠A=时,四边形BECD是正方形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知AB是⊙O的直径,弦AD是∠BAC的平分线,过点D作⊙O的切线L,且AC⊥DE,垂足为点E.
(1)求证:AD2=AB·AE
(2)如果DE=,CE=1,请判别四边形ACDO的形状,并证明你的结论成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.
(1)若抛物线经过点C、A、A′,求此抛物线的解析式;
(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;
(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com