【题目】如图,已知,垂足分别是.
(1)证明:.
(2)连接,猜想与的关系?并证明你的猜想的正确性.
【答案】(1)证明见解析;(2)DF=BE,DF∥BE,证明见解析.
【解析】
(1)求出AF=CE,∠AFB=∠DEC=90°,根据平行线的性质得出∠DCE=∠BAF,根据ASA推出△AFB≌△CED即可;
(2)根据平行四边形的判定得出四边形是平行四边形,再根据平行四边形的性质得出即可.
(1)证明:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
∵DE⊥AC,BF⊥AC,
∴∠AFB=∠DEC=90°,
∵DC∥AB,
∴∠DCE=∠BAF,
在△AFB和△CED中
∴△AFB≌△CED,
∴DE=EF;
(2)DF=BE,DF∥BE,
证明:∵DE⊥AC,BF⊥AC,
∴DE∥BF,
∵DE=BF,
∴四边形DEBF是平行四边形,
∴DF=BE,DF∥BE.
科目:初中数学 来源: 题型:
【题目】为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)补全频数分布直方图;
(2)表示户外活动时间1小时的扇形圆心角的度数是多少;
(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;
(4)本次调查学生参加户外活动的平均时间是否符合要求?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11·孝感)学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】与是两块全等的含的三角板,按如图①所示拼在一起,与重合.
(1)求证:四边形为平行四边形;
(2)取中点,将绕点顺时针方向旋转到如图位置,直线与分别相交于两点,猜想长度的大小关系,并证明你的猜想;
(3)在(2)的条件下,当旋转角为多少度时,四边形为菱形.并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(k≠0)的图象过等边三角形AOB的顶点A,已知点B(﹣2,0)
(1)求反比例函数的表达式;
(2)若要使点B在上述反比例函数的图象上,需将△ABC向上平移多少个单位长度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一名男生推铅球,铅球行进的高度y(m)与水平距离x(m)之间的关系是二次函数的关系.铅球行进起点的高度为m,行进到水平距离为4m时达到最高处,最大高度为3m.
(1)求二次函数的解析式(化成一般形式);
(2)求铅球推出的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com